Что вы понимаете под динамичностью цитоскелета. Единицы живого: Цитоскелет. Чем микротрубочки отличаются от микрофиламентов

ЦИТОСКЕЛЕТ

Цитоскелет представляет собой сложную динамичную систему микротрубочек, микрофиламентов, промежуточных филаментов и микротрабекул. Указанные компоненты цитоскелета являются немем-" бранными органеллами; каждый из них образует в клетке трехмерную сеть с характерным распределением, которая взаимодействует с сетями из других компонентов. Они входят также в состав ряда других более сложно организованных органелл (ресничек, жгутиков, микроворсинок, клеточного центра) и клеточных соединений (десмосом, полудесмосом, опоясывающих десмосом).

Основные функции цитоскелета:

1 поддержание и изменение формы клетки;

2 распределение и перемещение компонентов клетки;

3 транспорт веществ в клетку и из нее;

4 обеспечение подвижности клетки;

5участие в межклеточных, соединениях.

Микротрубочки

Микротрубочки, - наиболее крупные компоненты цитоскелета. Они представляют с^бой полые цилиндрические образования, имеющие форму трубочек, длиной до нескольких микрометров (в жгутиках более 50 нм) диаметром около 24-25 нм, с толщиной стенки 5 нм и диамет­ром просвета 14-15 нм (рис. 3-14).

Стенка микротрубочки состоит из спиралевидно уложенных нитей - протофиламентов толщиной 5 нм (которым на поперечном разрезе со­ответствуют 13 субъединиц), образованных димерами из белковых моле­кул а~ и /3-тубулина.

Функции микротрубочек:

(1) поддержание формы и полярности клетки, распределения ее компонентов,

(2) обеспечение внутриклеточного транспорта,

(3) обеспечение движения ресничек, хромосом в митозе (формиру­ют ахроматиновое веретено, необходимое для клеточного деления),

(4) образование основы других органелл (центриолей, ресничек).

Расположение микротрубочек. Микротрубочки располагаются в цитоплазме в составе нескольких систем;

а) в виде отдельных элементов, разбросанных по всей цитоплазме и формирующих сети;

б) в пучках, где они связаны тонкими поперечными мостиками (в отростках нейронов, в составе митогяческого веретена, манжетки сперматиды, периферического "кольца" тромбоцитов);

в) частично сливаясь друг с другом с формированием пар, или ду­блетов (в аксонеме ресничек и жгутиков), и триплетов (в базальном тельце и центриоли).

Образование и разрушение микротрубочек. Микротрубочки пред­ставляют собой лабильную систему, в которой имеется равновесие меж­ду их постоянной сборкой и диссоциацией. У большинства микро­трубочек один конец (обозначаемый как "-") закреплен, а другой ("+") свободен и участвует в их удлинении или деполимеризации. Структура­ми, обеспечивающими образование микротрубочек, служат особые мел- I кие сферические тельца - сателлиты (от англ, satellite - спутник), отче- { го последние называют центрами организации микротрубочек (ЦОМТ). . Сателлиты содержатся в базалъных тельцах ресничек и клеточном цен- I тре (см. рис. 3-15 и 3-16). После полного разрушения микротрубочек ] в цитоплазме они отрастают от клеточного центра со скоростью около 1 мкм/мин., а их сеть вновь восстанавливается менее, чем за полтора часа. К ЦОМТ относят также и центромеры хромосом.

Связь микротрубочек с другими структурами клетки и между со­бой осуществляется посредством ряда белков, выполняющих различные функции. (1) Микротрубочки с помощью вспомогательных белков при­креплены к другим клеточным компонентам. (2) По своей длине микро­трубочки образуют многочисленные боковые выросты (которые состоят из белков, ассоциированных с микротрубочками) длиной до нескольких десятков нанометров. Благодаря тому, что такие белки последовательно и обратимо связываются с органеллами, транспортными пузырьками, секреторными гранулами и другими образованиями, микротрубочки (ко- ] торые сами не обладают сократимостью) обеспечивают перемещение указанных структур по цитоплазме. (3) Некоторые белки, ассоцииро­ванные с микротрубочками, стабилизируют их структуру, а связываясь с их свободными краями, препятствуют деполимеризации.

Угнетение самосборки микротрубочек посредством ряда веществ, являющихся ингибиторами митоза (колхицин, винбластин, винкрис-тин), вызывает избирательную гибель быстроделящихся клеток. Поэто­му некоторые из таких веществ успешно используются для химиотера-

пии опухолей. Блокаторы микротрубочек нарушают также транспортные процессы в цитоплазме, в частности, секрецию, аксонный транспорт в нейронах. Разрушение микрогрубочек приводит к изменениям формы клетки и дезорганизации ее структуры и распределения органелл.

Клеточный центр (цитоцентр)

Клеточный центр образован двумя полыми цилиндрическими структурами длиной 0.3-0.5 <мкм и диаметром 0.15-0.2 мкм - центриоля-ми, которые располагются вблизи друг друга во взаимно перпендикуляр­ных плоскостях (рис. 3-15). Каждая центриоль состоит из 9 триплетов частично слившихся микротрубочек (А, В и С), связанных поперечны­ми белковыми мостиками ("ручками"). В центральной части центриоли микротрубочки отсутствуют (по некоторым данным, здесь имеется осо­бая центральная нить), что описывается общей формулой (9*3) + 0. Каждый триплет центриоли связан со сферическими тельцами диамет­ром 75 нм - сателлитами; расходящиеся от них микротрубочки образу­ют центросферу.

В неделящейся клетке выявляется одна пара центриолей (диплосо-ма), которая обычно располагается вблизи ядра. Перед делением в S-ne-риоде интерфазы происходит дупликация центриолей пары, причем под прямым углом к каждой зрелой (материнской) центриоли формируется новая (дочерняя), незрелая процентриоль, в которой вначале имеются лишь 9 единичных микротрубочек, позднее превращающихся в трипле­ты. Пары центриолей далее расходятся к полюсам клетки, а во время митоза они служат центрами образования микротрубочек ахроматина-вого веретена деления.

Реснички и жгутики

Реснички и жгутики - органеллы специального значения, участ­вующие в процессах движения, - представляют собой выросты цитоплаз­мы, основу которых составляет каркас из микротрубочек, называемый осевой нитью, или аксонемой (от греч. axis - ось и пета - нить). Длина ресничек равна 2-10 мкм, а их количество на поверхности одной рес­нитчатой клетки может достигать нескольких сотен. В единственном типе клеток человека, имеющих жгутик - спермиях - содержится только по одному жгутику длиной 50-70 мкм.

Аксонема образована 9 периферическими парами микротрубочек и одной центрально расположенной парой; такое строение описывается формулой (9 х 2) + 2 (рис. 3-16). Внутри каждой периферической пары за счет частичного слияния микротрубочек одна из них (А) полная, а вторая (В) - неполная (2-3 димера общие с микротрубочкой А).

Центральная пара микротрубочек окружена центральной оболоч­кой, от которой к периферическим дублетам расходятся радиальные спицы. Периферические дублеты связаны друг с другом мостиками нек-сина, а от микротрубочки А к микротрубочке В соседнего дублета от­ходят "ручки" из белка динеина (см. рис. 3-16), который обладает ак­тивностью АТФазы.

Биение реснички и жгутика обусловлено скольжением соседних дублетов в аксонеме, которое опосредуется движением динеиновых ру­чек. Мутации, вызывающие изменения белков, входящих в состав рес­ничек и жгутиков, приводят к различным нарушениям функции соответ­ствующих клеток. При синдроме Картагенера (синдроме неподвижных, ресничек), обычно обусловленном отсутствием динеиновых ручек, боль­ные страдают хроническими заболеваниями дыхательной системы (свя­занными с нарушением функции очищения поверхности респираторного эпителия) и бесплодием (вследствие неподвижности спермиев).

Базальное тельце, по своему строению сходное с центриолью, ле­жит в основании каждой реснички или жгутика. На уровне апикального конца тельца микротрубочка С триплета заканчивается, а микротру­бочки А и В продолжаются в соответствующие микротрубочки аксоне-мы реснички или жгутика. При развитии ресничек или жгутика базаль-ное тельце играет роль матрицы, на которой поисходит сборка компо­нентов аксонемы.

Микрофиламенты

Микрофиламенты - тонкие белковые нити диаметром 5-7 ни, лежащие в цитоплазме поодиночке, в виде сетей или пучками. В ске­летной мышце тонкие Микрофиламенты образуют упорядоченные пучки, взаимодействуя с более толстыми миозиновыми филаментами.

Кортикальная (терминальная) сеть - зона сгущения микрофила-ментов под плазмолеммой, характерная для большинства клеток. В этой сети Микрофиламенты переплетены между собой и "сшиты" друг с другом с помощью особых белков, самым распространенным из ко­торых является филамин. Кортикальная сеть препятствует резкой и вне­запной деформации клетки при механических воздействиях и обеспе­чивает плавные изменения ее формы путем перестройки, которая облег­чается актин-растворяющими (преобразующими) ферментами.

Прикрепление микрофиламентов к плазмолемме осуществляется благодаря их связи с ее интегральными ("якорными") белками (интег-ринами) - непосредственно или через ряд промежуточных белков - та­лин, винкулин и сс-актинин (см. рис. 10-9). Помимо этого, актиновые микрофиламенты прикрепляются к трансмембранным белкам в особых участках плазмолеммы, называемых адгезионными соединениями, или фокальными контактами, которые связывают клетки друг с другом или клетки с компонентами межклеточного вещества.

Актин - основной белок микрофиламентов - встречается в моно­мерной форме (G -, или глобулярный актин), которая способна в при­сутствии цАМФ и Са 2+ полимеризоваться в длинные цепи (F -, или фибриллярный актин). Обычно молекула актина имеет вид двух спи­рально скрученных нитей (см. рис. 10-9 и 13-5).

В микрофиламентах актин взаимодействует с рядом актин-связы-вающих белков (до нескольких десятков видов), выполняющих различ­ные функции. Некоторые из них регулируют степень полимеризации актина, другие (например, филамин в кортикальной сети или фимбрин и виллин в микроворсинке) способствуют связыванию отдельных микро­филаментов в системы. В немышечных клетках на актин приходится примерно 5-10% содержания белка, лишь около половины его организо­вано в филаменты. Микрофиламенты более устойчивы к физическим и химическим воздействиям, чем микротрубочки.

Функции микрофиламентов:

(1) обеспечение сократимости мышечных клеток (при взаимодей­ствии с миозином);

(2) обеспечение функций, связанных с кортикальным слоем цито­плазмы и плазмолеммой (экзо- и эндоцитоз, образование псевдоподий и миграция клетки);

(3) перемещение внутри цитоплазмы ореанелл, транспортных пу­зырьков и других структур благодаря взаимодействию с некоторыми белками (минимиозином), связанными с поверхностью этих структур;

(4) обеспечение определенной жесткости клетки за счет наличия кортикальной сети, которая препятствует действию деформаций, но са­ма, перестраиваясь, способствует изменениям клеточной формы;

(5) формирование сократимой перетяжки при цитотомии, завер­шающей клеточное деление;

(6) образование основы ("каркаса") некоторых органелл (микро-ворсинок, стереоцилий).

(7) участие в организации структуры межклеточных соединений (опоясывающих десмосом).

Микроворсинки - пальцевидные выросты цитоплазмы клетки ди­аметром 0.1 мкм и длиной 1 мкм, основу которых образуют актиновые микрофиламенты. Микроворсинки обеспечивают многократное увеличе­ние площади поверхности клетки, на которой происходит расщепление и всасывание веществ. На.апикальной поверхности некоторых клеток, активно участвующих в указанных процессах (в эпителии тонкой киш­ки и почечных канальцев) имеется до нескольких тысяч микроворси­нок, образующих в совокупности щеточную каемку.

Каркас каждой микроворсинки образован пучком, содержащим около 40 микрофиламентов, лежащих вдоль ее длинной оси (рис. 3-17). В апикальной части микроворсинки этот пучок закреплен в аморфном веществе. Его жесткость обусловлена поперечными сшивками из бел­ков фимбрина и виллина, изнутри пучок прикреплен к плазмолемме Микроворсинки особыми белковыми мостиками (молекулами минимио- З ина). У основания микроворсинки микрофиламенты пучка вплетается в терминальную сеть, среди элементов которой имеются миозиновые филаменты. Взаимодействие актиновых и миозиновых филаментов тер­минальной сети, вероятно, обусловливает тонус и конфигурацию микро­ворсинки.

Стереоцилии - видоизмененные длинные (в некоторых клетках -ветвящиеся) микроворсинки - выявляются значительно реже, чем мик­роворсинки и, подобно последним, содержат пучок микрофиламентов.

Цитоскелет выполняет три главные функции.

1. Служит клетке механическим каркасом, который придаёт клетке типичную форму и обеспечивает связь между мембранной и органеллами. Каркас представляет собой динамичную структуру, которая постоянно обновляется по мере изменения внешних условий и состояния клетки.

2. Действует как «мотор» для клеточного движения. Двигательные (сократительные) белки содержатся не только в мышечных клетках, но и в других тканях. Компоненты цитоскелета определяют направление и координируют движение, деление, изменение формы клеток в процессе роста, перемещение органелл, движение цитоплазмы.

3. Служит в качестве «рельсов» для транспорта органелл и других крупных комплексов внутри клетки.

Микрофиламенты и промежуточные волокна.

Микрофиламенты построенные из F-актина пронизывают микроворсинки, образуя узлы. Эти микроволокна удерживаются вместе с помощью актинсвязывающих белков, наиболее важными из которых являются фимбрин и виллин. Кальмодулин и миозиноподобная АТФ – аза соединяют крайние микроволокна с плазматической мембраной. .

Клетка может менять набор синтезируемых белков цитоскелета в зависимости от условий, но процесс этот медленный. Конструкция цитоскелета способна быстро меняться даже без синтеза новых молекул, за счет полимеризации и деполимеризации нитей. В клетке все время идет обмен между нитями и раствором белков-мономеров в цитоплазме. Во многих клетках примерно половина молекул актина и тубулина находится в виде мономеров в цитоплазме и половина входит в состав нитей микрофиламентов. Клетка регулирует стабильность нитей цитоскелета, присоединяя к ним специальные белки, изменяющие скорость полимеризации. Общий принцип функционирования цитоскелета – динамическая нестабильность. Например, форму эритроцита в виде двояковогнутого диска поддерживает примембранный цитоскелет из волокон, образованных белком спектрином. Спектрин связан с белком анкерином (anchor – якорь), который соединяется с белком цитоплазматической мембраны, ответственным за транспорт анионов (Cl - , HCO - 3). Дефекты белков спектрина и анкирина вызывают необычную форму эритроцитов. Такие эритроциты очень быстро разрушаются в селезенке. Болезни, вызываемые такими нарушениями, называют наследственным сфероцитозом или наследственным эллиптоцитозом.

Рис. Цитоскелет эукариот. Актиновые микрофиламенты окрашены в красный, микротрубочки - в зеленый, ядра клеток - в голубой цвет.

Кератиновые промежуточные филаменты в клетке.

Таким образом, эукариотические клетки обладают своего рода каркасом, который с одной стороны придает им определенную форму, а с другой допускает возможность её изменения, позволяя клеткам двигаться и перемещать свои органеллы с одной части клетки в другую. Кроме основных компонентов цитоскелета важную роль в его организации и функциональной интеграции играют вспомогательные белки. Эти белки отвечают за прикрепление органелл к цитоскелету, обеспечение направленного движения органелл, координацию функций цитоскелета.

Нарушения цитоскелета. Цитоскелет не является пассивной клеточной структурой, обеспечивающей только клеточную морфологию. Доказана роль цитоскелета в двигательной функции клеток, в структуре плазматической мембраны и, что очень важно, в рецепторной функции клеток. Отмечено, что изменения цитоскелета нарушают процесс высвобождения активного вещества (гормона, медиатора и т.д.), а также изменяют рецепторную функцию клеток-мишеней. В результате нарушается рецепция клетками (в частности, нервными) различных стимулирующих веществ. Кроме того, отмечается нарушение двигательной активности клеток (например, бета-клеток поджелудочной железы), в результате возникает недостаточность инсулина. Поэтому проявления диабета довольно постоянны при хромосомных синдромах (Тернера, Клайнфельтера, Дауна и т.п.). Другим примером заболеваний с нарушением цитоскелета являются мышечная дистрофия Дюшенна и мышечная дистрофия Беккера. Обе формы являются результатом мутаций гена, кодирующего белок дистрофин. Дистрофин, в свою очередь, входит в состав цитоскелета. В результате при биопсии мышц выявляют характерные изменения – перерождение мышц и некроз волокон.

Органеллы, содержащие триплеты микротрубочек

Центриоли . Центриоль имеет цилиндрическую форму, диаметр 150 нм и длину 500 нм; стенка образована 9 триплетами (триплетный – состоящий из трёх) микротрубочек. Центриоль – центр организации митотического веретена – участвует в делении клетки. В ходе фазы S клеточного цикла центриоли удваиваются. Образовавшаяся новая центриоль расположена под прямым углом к первоначальной центриоли. При митозе пары центриолей, каждая из которых состоит из первоначальной и вновь образованной, расходятся к полюсам клетки и участвуют в образовании митотического веретена.

Базальное тельце состоит из 9 триплетов микротрубочек, расположенных в основании реснички или жгутика; служит матрицей при организации аксонемы.

Аксонема состоит из 9 периферических пар микротрубочек и двух расположенных центрально одиночных микротрубочек. В каждой периферической паре микротрубочек различают субфибриллу А и субфибриллу В. С субфибриллой А связаны так называемые наружные и внутренние ручки. В их состав входит белок динеин, обладающий способностью расщеплять АТФ. Аксонема – основной структурный элемент реснички и жгутика.

Ресничка – вырост клетки длиной 5-10мкм и толщиной 0,2 мкм, содержащий аксонему. Реснички присутствуют в эпителиальных клетках воздухопроводящих и половых путей; перемещают слизь с инородными частицами и остатками отмерших клеток и создают ток жидкости около клеточной поверхности. Под влиянием табачного дыма реснички воздухоносных путей разрушаются, что способствует задержке секрета в бронхах.

Рис. Схема поперечного сечения реснички. (Из кн. Б. Албертс и др. «Молекулярная биология клетки», том 3.)

Схема строения эукариотической эпителиальной клетки

Рисунок В.П. Андреева

Внутриклеточное пространство внутри клетки – это зона цитозоля неструктурированного мембранами внутриклеточного содержимого. Цитозоль является жидкой частью цитоплазмы и составляет около половины объема клетки. Здесь синтезируются белки, часть которых собирается на полисомах и остается в цитозоле. Цитозоль непосредственно сообщается через крупные ядерные поры с содержимым ядра. В ядре идут процессы транскрипции РНК с ДНК, причем синтезируются как нормальные клеточные, так и вирусные при вирусных инфекциях клеток. РНК из ядра транспортируется для синтеза белка в цитозоль на полирибосомы. Синтезированные белки под контролем шаперонов («катализаторов» принятия полипептидной цепью биологически значимой конформации) направляются в специальные участки эндоплазматического ретикулума. Лишние, испорченные, а также вирусные белки расщепляются в цитозоле так называемыми протеасомами. «Протеасомы» представляют собой мультипротеазные комплексы, состоящие из 28 субъединиц. Протеасомы расщепляют вирусные белки до пептидов- антигенов. Образовавшиеся пептиды- антигены вступают в связь с молекулами главного комплекса гистосовместимости (ГКГ – I), и направляются для экспрессии на клеточную мембрану. Комплексы антиген – ГКГ- I, расположенные на клеточной мембране, узнаются СД8 + Т- лимфоцитами, которые при этом активируются и обеспечивают противовирусную защиту, а также защиту от цитозольных внутриклеточных инфекций.

Внеклеточное пространство внутри клетки – это пространство (зона, компартмент) связанное с внешней внеклеточной средой и ограниченное мембранами структур и везикул, включающее в себя аппарат Гольджи, эндоплазматический ретикулум, лизосомы, эндосомы, фагосомы и фаголизосомы. Особое значение эта зона имеет в структуре антигенпредставляющих клеток, к которым относятся макрофаги и дендритные клетки (вариант лимфоцитов). На рибосомах эндоплазматической сети этих клеток синтезируются цепи молекул главного комплекса гистосовместимости (ГКГ- III). Конформация этих молекул произойдет только в том случае, если они соединятся с пептидами , образующимися в результате протеолиза (расщепления) белков – антигенов, захваченных клеткой посредством эндоцитоза или фагоцитоза. Это происходит тогда, когда фаголизосомы сливаются с везикулами, содержащими несконформированные молекулы ГКГ- II. С участием пептида молекула ГКГ- II принимает правильную конформацию, продвигается к мембране и экспрессируется на ней. Комплексы антигенов-пептидов с молекулами ГКГ- II распознают СД4 + Т – лимфоциты, которые играют главную роль в защитных реакциях от внеклеточных инфекций.

Концепции современной цитологии

Для разных клеточных типов у различных организмов характерны универсальные процессы. Это передача сигналов внутри клетки, регуляция клеточного цикла, апоптоз, тепловой шок, деградация внутриклеточных белков.

Апоптоз – биологический механизм гибели клетки по тому или иному сигналу извне или изнутри, который активирует внутри клетки определенные системы ферментов, обеспечивающих повреждение митохондрий, фрагментацию ДНК и затем фрагментацию ядра и цитоплазмы клетки. В результате клетка распадается на окруженные мембраной апоптозные тельца, которые могут фагоцитироваться соседними эпителиальными клетками и макрофагами. Содержимое погибающей клетки не попадает во внеклеточную среду. В ткани не развивается воспаление. Жизнь многоклеточных организмов невозможна без запрограммированной клеточной гибели, которая регулирует развитие, тканевый гомеостаз, клеточный ответ на повреждение ДНК и старение.

Тепловой шок

Тепловой шок может вызываться не только слишком высокой, но и слишком низкой температурой, ядами и множеством других воздействий, например, сбоем цикла суточной активности. Под воздействием этих факторов в клетке появляются белки с «неправильной» третичной структурой. Многие белки теплового шока как раз и помогают переводить в раствор и вновь сворачивать денатурированные или неправильно свернутые белки.

Реакция теплового шока сопровождается прекращением синтеза обычных для клетки белков и ускоренным синтезом различных защитных белков. Эти белки защищают от повреждений ДНК, матричные РНК, предшественники рибосом, и прочие важные для клетки структуры. Реакция теплового шока необычайно древняя и консервативная. Некоторые белки теплового шока обнаруживают гомологию у бактерий и человека.

К N-концу поврежденных, изношенных, недостроенных и функционально неактивных белков присоединяются молекулы белка-убиквитина, делая их мишенью для ферментов класса протеаз. Ассоциированный с убиквитином белок разрушается в особых мультикомпонентных комплексах, называемых протеасомами. Убиквитин – пример белка теплового шока, функционирующий в клетке и в нормальных условиях. В некоторых клетках, синтезируется до 30% аномальных белков. За открытие роли убиквитина в деградации белков была присуждена в 2004 году Нобелевская премия по химии.

Шапероны (от англ. букв.- пожилая дама, сопровождающая молодую девушку на балах) – семейство специализированных внутриклеточных белков, обеспечивающих быстрое и правильное сворачивание (фолдинг) вновь синтезированных молекул белка.

Кроме этого известны и другие белки шапероны. Например, шаперон HSP 70. Его синтез активируется при многих стрессах, в частности при тепловом шоке (отсюда и название Heart shook protein 70 – белок теплового шока). Цифра 70 означает молекулярную массу в килодальтонах. Основная функция этого белка – предотвращение денатурации других белков при повышении температуры. Шапероны – одни из самых жизненно важных белков всех живых существ. Они возникли на самых ранних стадиях эволюции, возможно еще до разделения организмов на прокариоты и эукариоты

Передача внешнего сигнала в клетку

Клетки не могут сами принять решение о том, что нужно организму. Они должны получить сигнал извне и лишь после этого внутриклеточная регуляция включится в поддержание необходимых процессов. Известные биохимики Вильям Эллиот и Дафна Эллиот приводят аналогию с мореплаванием. «Каждый корабль представляет собой организационную единицу «клетку», где поддерживается порядок и дисциплина, упорядоченно работают все механизмы и т.д. Вместе с тем, цели и маршруты плавания для кораблей определяются внешними сигналами (гормонами) высшего руководства (эндокринные железы и мозг).

Клетка обычно принимает сигнал о «состоянии дел» вокруг нее с помощью рецепторов. Н.Н. Мушкамбаров и С.Л. Кузнецов выделяют несколько механизмов действия сигнальных веществ.

1) Вещество взаимодействует с рецептором плазмолеммы, что индуцирует передачу сигнала внутрь клетки и при этом происходит химическая модификация (фосфорилирование, дефосфорилирование) определенных белков. (Фосфорильная группа несет сильный отрицательный заряд, что способствует изменению конформации белковой молекулы).

2) Вещество взаимодействует с рецептором плазмолеммы, который является одновременно и ионным каналом, открывающимся при связывании регулятора.

3) Внеклеточный регулятор проникает внутрь клетки мишени, связывается с цитоплазматическим или ядерным белком-рецептором и, выступая после этого как транскрипционный фактор, влияет на экспрессию определенных генов. Так действуют гормоны стероидной природы (например, мужские и женские половые гормоны).

В качестве сигнальных молекул иногда выступают простагландины и NO (оксид азота). Они проникают в клетку-мишень и влияют на активность регуляторных ферментов. Конечный результат – модификация определенных белков.

Наиболее часто используемым является механизм первого типа. При этом конкретные способы его реализации весьма разнообразны.

Передача сигналов внутри клетки

Водорастворимые сигнальные молекулы, в том числе известные нейромедиаторы, пептидные гормоны и факторы роста, присоединяются к специфическим белковым рецепторам на поверхности клеток-мишеней. Поверхностные рецепторы связывают сигнальную молекулу (лиганд), проявляя большое сродство к ней, и это внеклеточное событие порождает внутриклеточный сигнал, изменяющий поведение клетки.

Рецепторы являются интегральными мембранными белками.

Существует множество сигнальных путей, начинающихся от мембранного рецептора.

(Изменение мембранных рецепторов сопровождается возникновением различных болезней. Так, например, дефект в рецепторе мужского полового гормона тестостерона приводит к тому, что особи с мужским генотипом (2А+ХУ) выглядят как самки; все млекопитающие, не подвергнувшиеся в эмбриональный период воздействию тестостерона, развиваются по женскому пути. Мутантные самцы имеют нормальные семенники, вырабатывающие тестостерон, но ткани этих самцов не реагируют на гормон из-за дефектности соответствующих рецепторов. В результате у таких самцов развиваются все вторичные половые признаки самок и их семенники не опускаются в мошонку, а остаются в брюшной полости. Этот синдром (тестикулярной феминизации или сидром Морриса) встречается у мышей, крыс, крупного рогатого скота, а также у человека. Хотя изменен только ген, кодирующий рецептор тестостерона, затронутыми оказываются все разнообразные типы клеток, в норме реагирующие на этот гормон. Таким образом, один внешний сигнал может включать различные наборы генов в клетках разного типа.

Подавляющее большинство поверхностных рецепторов для гидрофильных сигнальных молекул, связав лиганд на внешней стороне мембраны, претерпевает конформационное изменение. Это изменение создает внутриклеточный сигнал, изменяющий поведение клетки-мишени. Внутриклеточные сигнальные молекулы часто называют вторыми посредниками (мессенджерами, англ. messenger – посыльный), считая «первым посредником» внеклеточный лиганд. К вторичным (внутриклеточным) посредникам относят циклический аденозинмонофосфат (цАМФ), циклический гуанозин 3΄,5΄ - монофосфат (цГМФ), катионы кальция, инозит-1,4,5-трифосфат, диацилглицерин. Кроме этого, известны сигнальные пути опосредованные белками, липидами, в том числе свободными жирными кислотами, оксидом азота (NO), а также пути не содержащие вторичного посредника. Примером последнего варианта является влияние γ-интерферона на транскрипцию определенных генов, с антивирусной направленностью. Внутриклеточные сигнальные пути регуляции клеточной активности очень сложны, до конца не изучены и многие открытия еще впереди. Достаточно сказать, что внутриклеточный сигнальный путь с участием инсулина, несмотря на многолетние исследования, еще не расшифрован.

Цитоскелет - это совокупность нитевидных белковых структур находящихся в цитоплазме живой клетки и образующих клеточный скелет или каркас. В 2001 году было установлено, что цитоскелет есть и в эукариотичских и прокариотических клетках. До 2001 года считалось то, что прокариотические клетки не имеют цитоскелета. Выделяют несколько основных систем цитослекелета клетки, которые делятся по основным белкам, входящим в состав (кератины, тубулин-динеиновая система или актин-миозиновая система) или по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты, микротрубочки или промежуточные филаменты).

Функции цитоскелета

Цитоскелет выполняет следующие функции:
1. Из названия цитоскелет можно понять его главную функцию. Он является скелетом или каркасом клетки;
2. Он придаёт клетке определённую форму и обеспечивает внутри клетки перемещение и взаимодействие органелл;
3. Цитоскелет может изменяться при изменении внешних условий и состояния клетки;
4. За счёт измененеия структуры обеспечивает движение цитоплазмы, изменение формы клеток в процессе роста.

 

Из определения цитоскелета можно понять, что цитоскелет клетки состоит из белков трёх разных видов. В состав цитосклета входят микрофиламенты, промежуточные филаменты и микротрубочки.
1. Микрофиламентами называются нити, состоящие из молекул глобулярного белка актина, миозина, тропомиозина, актинина. Имеют размер 7-8 нанометров. Состоят из двух перекрученных цепочек белка;
2. Промежуточными филаментами называются нитевидные структуры из особых белков четырёх типов. Имеют размер 9-11 нанометров;
3. Микротрубочками цитоскелета называют белковые структуры представляющие собой полые цилиндры образованные димерами тубулина. Диаметр цилиндр равен 25 нанометрам. Микротрубочки как и микрофиламенты являются полярными.

Цитоскелет образуется тремя компонентами: микротрубочками, микрофиламентами, и промежуточными филаментами.

Микротрубочки пронизывают всю цитоплазму клетки. Каждая из них представляет собой полый цилиндр диаметром 20 – 30 нм. Стенка микротрубочек образована 13-ю нитями (протофиламентами), скрученными по спирали одна над другой. Каждая нить, в свою очередь, слагается из димеров белка тубулина. Синтез тубулинов происходит на мембранах гранулярной ЭПС, а сборка в спираль – в клеточном центре.

Соответственно, многие микротрубочки имеют радиальное направление по отношению к центриолям. Отсюда они распространяются по всей цитоплазме.

Большинство микротрубочек имеет закрепленный («-») и свободный («+») концы.Свободный конец обеспечивает удлинение и уко­рочение трубочек.В образовании микротрубочек путем самосборки уча­ствуют мелкие сферические тельца – сателлиты (центры организации микротрубочек), содержащиеся в клеточном центре и в базальных тель­цах ресничек, а также центромеры хромосом. Если полностью разру­шить микротрубочки цитоплазмы, то они отрастают от клеточного центра со скоростью 1 мкм/мин. Разрушение микротрубочек приводит к изменению формы клетки (животная клетка обретает обычно сфери­ческую форму). При этом нарушаются структура клетки и распределе­ние органелл.

В клетке микротрубочки могут располагаться:

Ø в виде отдельных элементов;

Ø в пучках, в которых они связаны друг с другом попереч­ными мостиками (отростки нейронов);

Ø в составе пар или дублетов (осевая нить ресничек и жгутиков);

Ø в составе триплетов (центриоли и базальные тельца).

В двух последних вариантах микротрубочки час­тично сливаются друг с другом.

Функции микротрубочек:

а) поддержание формы и полярности клетки;

б) обеспечение упорядоченности располо­жения компонентов клетки;

в) участие в образовании других, более слож­ных органелл (центриоли, реснички и т.д.);

г) участие во внутрикле­точном транспорте;

д) обеспечение движения хромосом при митотическом делении клетки;

е) обеспечение движения ресничек.

Микрофиламенты. Микрофиламентами названы тонкие белковые нити диаметром 5 – 7 нм, встречающиеся практически во всех типах клеток. Они могут располагаться в ци­топлазме пучками, сетевидными слоями или поодиночке.

Основным бел­ком микрофиламентов является актин,на долю которого приходится до 5% от общего количества белков. Кроме него в состав микрофиламентов могут входить миозин, тропомиозин, а также несколько десятков актинсвязывающих белков. Молекула акти­на имеет обычно вид двух спирально скру­ченных нитей. Непосредственно под плазмолеммой располагается кортикальная сеть,в которой микрофиламенты переплетены между собой и соединены друг с другом с помощью особых белков, например филамина. Кортикальная сеть обусловливает плавность изменения формы клеток, постепенно перестраиваясь с участием актин-расщепляющих ферментов.Тем самым она препятствует резкой и внезапной деформации клетки при механи­ческих воздействиях. Отдельные микрофиламенты кортикальной сети прикрепляются к интегральным и трансмембранным белкам плазмолеммы, а также к так называемым адгезионным соединениям (фокальным контактам), которые связывают клетку с компонентами межклеточного вещества или с другими клетками. Микрофиламенты более устойчивы к физическим и химическим воздействиям, чем микротрубочки.



Основные функции микрофиламентов:

1) обеспече­ние определенной жесткости и упругости клетки за счет кортикальной сети микрофиламентов;

2) изменение консистенции цитозоля, в том числе при переходе золя в гель;

3) участие в эндоцитозе и экзоцитозе;

4) обеспечение подвижности немышечных клеток (например, нейтрофилов и макрофагов), в основе которой лежит изменение формы кле­точной поверхности вследствие регулируемой полимеризации актина;

5) участие в сокращении мышечных клеток и волокон;

6) стабилизация локальных выпячиваний плазматической мембраны, обеспечиваемой пучками поперечно сшитых актиновых филаментов (микроворсинки, стереоцилии);

7) участие в формировании межклеточных соединений (опоясывающие десмосомы и др.).

Промежуточные филаменты представляют собой сплетенные белковыми нитями канаты толщиной около 10 нм. Такой показатель обусловил отведение им промежуточного места между микротрубоч­ками и микрофиламентами. Промежуточные филаменты образуют трехмерные сети в клетках различных тканей животного организма. Они окружают ядро и могут находиться в различных участ­ках цитоплазмы, образуют межклеточные соединения (десмосомы и полудесмосомы), располагаются внутри отростков нервных клеток.

Основные функции промежуточных филаментов:

1) структурная;

2) опорная;

3) функция распределения органелл в определенных уча­стках клетки.

-Совокупность нитевидных белковых структур – микротрубочек и микрофиламентов, составляющих опорно-двигательную систему клетки.

Цитоскелет - высокодинамичная система цитоплазмы. Многие структуры цитоскелета могут легко разрушаться и вновь возникать, меняя свое расположение или морфологию. В основе этих особенностей цитоскелета лежат реакции полимеризации-деполимеризации основных структурных цитоскелетных белков и их взаимодействие с другими белками, как структурными, так и регуляторными.

Цитоскелетом обладают только эукариотические клетки, в клетках прокариот (бактерий) его нет, что является важным различием этих двух типов клеток. Цитоскелет придаёт клетке определённую форму даже при отсутствии жёсткой клеточной стенки. Он организует движение органоидов в цитоплазме (т. н. течение протоплазмы), лежащее в основе амёбоидного движения. Цитоскелет легко перестраивается, обеспечивая в случае необходимости изменение формы клеток. Способность клеток изменять форму обусловливает перемещение клеточных пластов на ранних стадиях зародышевого развития. При делении клетки (митозе) цитоскелет «разбирается» (диссоциирует), а в дочерних клетках вновь происходит его самосборка.

Функции цитоскелета многообразны. Он способствует поддержанию формы клетки, осуществляет все типы клеточных движений. Кроме того, цитоскелет может принимать участие в регуляции метаболической активности клетки.

Цитоскелет образован белками. В цитоскелете выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (Микрофиламенты, промежуточные филаменты, микротрубочки), либо по основным белкам, входящим в их состав (актин-миозиновая система, кератины, тубулин-динеиновая система).

Промежуточные филаменты являются наименее понятной структурой среди основных компонентов цитоскелета в отношении их сборки, динамики и функций. Их свойства и динамика сильно отличаются от соответствующих характеристик как микротрубочек, так и актиновых филаментов. Функции же промежуточных филаментов до сих пор остаются в области гипотез.

Цитоплазматические промежуточные филаменты обнаружены в подавляющем большинстве укариотических клеток, как у позвоночных, так и беспозвоночных животных, у высших растений. Редкие примеры клеток животных, у которых не обнаружены промежуточные филаменты, не могут считаться окончательными, так как белки промежуточных филаментов могут образовывать необычные структуры.

Морфологические микротрубочки представляют собой полые цилиндры диаметром около 25 нм с толщиной стенки около 5 нм. Стенка цилиндра состоит их протофиламентов - линейных полимеров тубулина с продольно ориентированными гетеродимерами. В составе микротрубочек протофиламенты идут вдоль их длинной оси с небольшим сдвигом друг относительно друга, так что субъединицы тубулина образуют трехстартовую спираль. В состав микротрубочек большинства животных входит 13 протофиламентов

Актиновые филаменты играют ключевую роль в сократительном аппарате мышечных и немышечных клеток, а также принимают участие во многих других клеточных процессах, таких как подвижность, поддержание формы клетки, цитокинез

Актиновые филаменты или фибриллярный актин ( F-актин) представляют собой тонкие фибриллы диаметром 6-8 нм. Они являются результатом полимеризации глобулярного актина - G-актина. В клетке актиновые филаменты с помощью других белков могут образовывать множество разнообразных структур.

Loading...Loading...