§7. Нуклеиновые кислоты. Мономер ДНК. Какие мономеры образуют молекулу ДНК? Что является мономером в молекуле днк

Нуклеиновые кислоты были открыты в 1868 г. швейцарским ученым Ф. Мишером.
В организмах существует несколько видов нуклеиновых кислот, которые встречаются в различных органоидах клетки – ядре, митохондриях, пластидах.
К нуклеиновым кислотам относятся ДНК, и-РНК, т-РНК, р-РНК .

Дезоксирибонуклеиновая кислота (ДНК)

– линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных (соответствующих друг другу по конфигурации) цепей. Пространственная структура молекулы ДНК была смоделирована американскими учеными Джеймсом Уотсоном и Френсисом Криком в 1953 г.
Мономерами ДНК являются нуклеотиды .
Каждый нуклеотид ДНК состоит из пуринового (А – аденин или Г – гуанин) или пиримидинового (Т – тимин или Ц – цитозин) азотистого основания , пятиуглеродного сахара – дезоксирибозы и фосфатной группы .
Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности : напротив аденина расположен тимин, напротив гуанина – цитозин. Пара А – Т соединена двумя водородными связями, а пара Г – Ц – тремя. При репликации (удвоении) молекулы ДНК водородные связи рвутся и цепи расходятся и на каждой из них синтезируется новая цепь ДНК. Остов цепей ДНК образован сахарофосфатными остатками.
Последовательность нуклеотидов в молекуле ДНК определяет ее специфичность , а также специфичность белков организма, которые кодируются этой последовательностью. Эти последовательности индивидуальны и для каждого вида организмов, и для отдельных особей.
Пример :
дана последовательность нуклеотидов ДНК: ЦГА – ТТА – ЦАА.
На информационной РНК (и-РНК) будет синтезирована цепь ГЦУ – ААУ – ГУУ, в результате чего выстроится цепочка аминокислот: аланин – аспарагин – валин.
При замене нуклеотидов в одном из триплетов или их перестановке этот триплет будет кодировать другую аминокислоту, а, следовательно изменится и белок, кодируемый данным геном. Изменения в составе нуклеотидов или их последовательности называются мутацией .

Рибонуклеиновая кислота (РНК)

– линейный полимер, состоящий из одной цепи нуклеотидов. В составе РНК тиминовый нуклеотид замещен на урациловый (У). Каждый нуклеотид РНК содержит пятиуглеродный сахар – рибозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.
Синтезируются РНК в ядре. Процесс называется транскрипция - это биосинтез молекул РНК на соответствующих участках ДНК; первый этап реализации генетической информации в клетке, в процессе которого последовательность нуклеотидов ДНК «переписывается» в нуклеотидную последовательность РНК.
Молекулы РНК формируются на матрице, которой служит одна из цепей ДНК, последовательность нуклеотидов в которой определяет порядок включения рибонуклеотидов по принципу комплементарности. РНК-полимераза, продвигаясь вдоль одной из цепей ДНК, соединяет нуклеотиды в том порядке, который определен матрицей. Образовавшиеся молекулы РНК называют транскриптами .
Виды РНК.
Матричная или информационная РНК. Синтезируется в ядре при участии фермента РНК-полимеразы. Комплементарна участку ДНК, на котором происходит синтез. Ее функция – снятие информации с ДНК и передача ее к месту синтеза белка – на рибосомы. Составляет 5% РНК клетки.
Рибосомная РНК – синтезируется в ядрышке и входит в состав рибосом. Составляет 85% РНК клетки.
Транспортная РНК – транспортирует аминокислоты к месту синтеза белка. Имеет форму клеверного листа и состоит из 70-90 нуклеотидов.

Аденозинтрифосфорная кислота – АТФ

– представляет собой нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты, в двух из которых запасается большое количество энергии. При отщеплении одного остатка фосфорной кислоты освобождается 40 кДж/моль энергии. Способность запасать такое количество энергии делает АТФ ее универсальным источником. Синтез АТФ происходит в основном в митохондриях.

Таблица. Функции нуклеотидов в клетке.

Таблица. Сравнительная характеристика ДНК и РНК.

Тематические задания.

Часть А

А1 . Мономерами ДНК и РНК являются
1) азотистые основания
2) фосфатные группы
3) аминокислоты
4) нуклеотиды

А2 . Функция информационной РНК:
1) удвоение информации
2) снятие информации с ДНК
3) транспорт аминокислот на рибосомы
4) хранение информации

А3 . Укажите вторую цепь ДНК, комплементарную первой: АТТ – ГЦЦ – ТТГ
1) УАА – ТГГ – ААЦ
3) УЦЦ – ГЦЦ – АЦГ
2) ТАА – ЦГГ – ААЦ
4) ТАА – УГГ – УУЦ

А4 . Подтверждением гипотезы, предполагающей, что ДНК является генетическим материалом клетки, служит:
1) количество нуклеотидов в молекуле
2) индивидуальность ДНК
3) соотношение азотистых оснований (А = Т, Г= Ц)
4) соотношение ДНК в гаметах и соматических клетках (1:2)

А5 . Молекула ДНК способна передавать информацию благодаря:
1) последовательности нуклеотидов
2) количеству нуклеотидов
3) способности к самоудвоению
4) спирализации молекулы

А6 . В каком случае правильно указан состав одного из нуклеотидов РНК
1) тимин – рибоза – фосфат
2) урацил – дезоксирибоза – фосфат
3) урацил – рибоза – фосфат
4) аденин – дезоксирибоза – фосфат

Часть В

В1 . Выберите признаки молекулы ДНК
1) Одноцепочная молекула
2) Нуклеотиды – АТУЦ
3) Нуклеотиды – АТГЦ
4) Углевод – рибоза
5) Углевод – дезоксирибоза
6) Способна к репликации

В2 . Выберите функции, характерные для молекул РНК эукариотических клеток
1) распределение наследственной информации
2) передача наследственной информации к месту синтеза белков
3) транспорт аминокислот к месту синтеза белков
4) инициирование репликации ДНК
5) формирование структуры рибосом
6) хранение наследственной информации

Часть С

С1 . Установление структуры ДНК позволило решить ряд проблем. Какие, по вашему мнению, это были проблемы и как они решились в результате этого открытия?
С2 . Сравните нуклеиновые кислоты по составу и свойствам.

ДНК – полимерная молекула, состоящая из тысячи и даже миллионов мономеров – дезоксирибонуклеотидов (нуклеотид). ДНК содержится преимущественно в ядре клеток, а также небольшое количество в митохондриях и хлоропластах.

РНК – полимер, мономером которого является рибонуклеотид. РНК находится в ядре и цитоплазме. РНК представляет собой однонитевую молекулу, построенную таким же образом как и одна из цепей ДНК. Три основания совершенно одинаковы ДНК: А, Г, Ц, однако вместо Т, присутствующего в ДНК, в состав РНК входит У. В РНК вместо углевода дезоксирибозы – рибоза.
^ 13: нуклеиновые кислоты: строение и функции. Химическая структура мономеров нуклеиновых кислот (нуклеотиды и нуклеозиды, пурины и пиримидины).

Нуклеиновые кислоты – это линейные полимеры, мономерами которых являются нуклеотиды. Нуклеотид образован нуклеозидной группой, фосфатом и пентозой. Полимеры – это макромолекулы, которые состоят из большого числа повторяющихся структурных единиц – мономеров. Мономерами ДНК являются дезоксирибонуклеотиды, мономерами РНК – рибонуклеотиды.

^ Строение и номенклатура нуклеотидов. В состав нуклеотида входят три компонента: фосфат – сахар – основание.

углеводный компонент нуклеотида представлен рибозой или 2’-дезоксирибозой, имеющих D-конфигурацию.

^ Азотистые основания – это гетероциклические органические соединения, содержащие атомы азота. В составе ДНК встречаются 4 типа оснований - аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т), в состав РНК входят А, Г, Ц и У (урацил). Аденин и гуанин являются производными пурина, цитозин, тимин и урацил – это производные пиримидина.

Номенклатура . Соединение, состоящее из основания и углевода, называется нуклеозидом. Азотистые основания соединяются с 1’ углеродным атомом пентозы β-гликозидной связью.

^ Первичная структура полимера определяется последовательностью мономеров в цепи. Нуклеотиды соединяются друг с другом 3’,5’-фосфодиэфирной связью, образуя полинуклеотидные цепи из сотен тысяч и миллионов нуклеотидов. Короткие цепочки из десяти – пятнадцати нуклеотидов называются олигонуклеотидами. Фосфат связывает 3’-ОН группу одного нуклеотида с 5’-OH группой другого нуклеотида.

^ Генетические функции нуклеиновых кислот: 1- хранение генетической информации. 2 - реализация генетической информации (синтез полипептида). 3 - передача наследственной информации дочерним клеткам при делении клеток и последующим поколениям при размножении.
^ 14: первичная структура ДНК (строение и номенклатура нуклеотидов, образование полинуклеотидной цепи, направление цепи, связь между нуклеотидами).

ДНК- генетический материал всех клеточных форм жизни, а также ряда вирусов. ДНК выполняет все функции нуклеиновых кислот. ДНК характеризуется рядом особенностей: 1 – способность к репликации. 2 – способность к репарации. 3 – способность к рекомбинации.

Локализация ДНК в клетке: прокариоты – цитоплазма (нуклеоид, плазмиды). Эукариоты – ядро (хромасомы), органойды (митохондрии, пластиды, клеточный центр).

^ ПЕРВИЧНАЯ структура ДНК – это линейный полимер – цепь последовательно расположенных нуклеотидов (дезоксирибонуклеотида), соединенных 3’,5’ фосфодиэфирными связями.

В состав дезоксирибонуклеотида входитвходит одно из азотистых оснований (А, Г, Т или Ц), пентоза – дезоксирибоза и остаток фосфата. Таким образом дезоксирибонуклеотиды различаются только азотистыми основаниями.

Нуклеотиды соединяются друг с другом 3’,5’-фосфодиэфирной связью, образуя полинуклеотидные цепи. Короткие цепочки из десяти – пятнадцати нуклеотидов называются олигонуклеотидами. Фосфат связывает 3’-ОН группу одного нуклеотида с 5’-OH группой другого нуклеотида.

Формирование первичной структуры обеспечивается двумя типами связей: гликозидными между азотистым основанием и углеводом, и фосфодиэфирными между нуклеотидами.
^ 15: Модель ДНК Уотсона и Крика. Параметры и структура двойной спирали ДНК (принцип комплементарности, водородные связи и стэкинг взаимодействия).

Вторичная структура ДНК . Молекула ДНК в клетках прокариот и эукариот присутствует только в виде двойной спирали, т.е. состоит из двух полинуклеотидных цепей. Эти цепи комплементарны, антипараллельны и закручены в спираль вокруг общей оси. На один виток спирали приходится 10 пар оснований, диаметр спирали составляет 2 нм. Сахарофосфатный остов расположен снаружи (заряжен отрицательно), азотистые основания находятся внутри спирали и располагаются стопкой друг над другом. Эта модель строения ДНК была предложена Дж. Уотсоном и Ф. Криком в 1953 году.

^ Правила Чаргаффа. В 1953 Чаргафф установил следующие закономерности:


  1. количество пуриновых оснований (A+Г) в молекуле ДНК всегда равно количеству пиримидиновых оснований (Т+Ц).

  2. количество аденина равно количеству тимина [А=Т, А/Т= 1]; количество гуанина равно количеству цитозина [Г=Ц, Г/Ц=1];

  3. соотношение количества гуанина и цитозина в ДНК к количеству аденина и тимина является постоянным для каждого вида живых организмов: [(Г+Ц)/(А+Т)=К, где К - коэффициент специфичности].

Правила Чаргаффа, как правило, выполняются на двойной спирали ДНК за счет комплементарности аденина тимину, а гуанина - цитозину. В некоторых случаях содержание гуанина выше, чем цитозина, за счет метилирования некоторых цитозиновых остатков в ДНК.

^ Принцип комплементарности . Азотистые основания в молекуле ДНК могут образовывать канонические пары: А – Т, Г – Ц. это значит, что водородные связи и молекуле ДНК образуются только между комплеменатрными основаниями: между аденином и тимином образуется две, между гуанином и цитозином – три водородные связи.

^ Цепи ДНК антипараллельны . Каждая цепь ДНК имеет два конца – 5’- конец и 3’- конец. На 5’- конце полинуклеотидной цепи 5-ОН группа дезоксирибозы не связана с другим нуклеотидом, на другом конце цепи 3-ОН группа тоже не связана с другим нуклеотидом. Правило антипараллельности означает, что две цепи в молекуле ДНК имеют противоположную направленность. За направление цепи по соглашению принято направление 5’ → 3’ .

^ Правила написания последовательности ДНК : в виде последовательности букв, обозначающих основания: 5’ – GATCCA - 3’, или в виде стрелок с противоположной ориентацией.

В разделе на вопрос что является мономерами днк и рнк? заданный автором АЛЁНА VIP лучший ответ это ДНК состоит из четырех типов мономеров - нуклеотидов.
РНК - рибонуклеиновая кислота - похожа на ДНК и тоже построена из мономерных нуклеотидов 4 типов. ортофосфорной кислоты, рибоза (в отличие от ДНК, содержащей дезоксирибозу) и азотистые основания - аденин, цитозин, гуанин и урацил (в отличие от ДНК, содержащей вместо урацила тимин). Эти молекулы содержатся в клетках всех живых организмов, а также в некоторых вирусах.
Урацил характерен для мономеров РНК, а тимин - для мономеров ДНК, и это второе различие РНК и ДНК. Мономеры - рибонуклеотиды РНК или дезоксирибонуклеотиды ДНК - образуют полимерную цепь

Ответ от Екатерина Борисова [новичек]
Лена...), всё правильно спасибо
БОЛЬШОЕ!


Ответ от Лена...) [активный]
Мономерами РНК являются нуклеотиды, состоящие из рибозы, остатка фосфорной кислоты и одного из четырех азотистых оснований. 3 азотистых основания - аденин, гуанин и цитозин - такие же как и у ДНК, а четвертое - урацил.
В состав молекулы ДНК входят четыре типа азотистых оснований: аденин, гуанин, цитозин или тимин. Они определяют названия соответствующих нуклеотидов: А - адениловых, Г- гуаниловых, Ц - цитидиловых и Т - тимидиловых. Каждая цепь ДНК представляет поленуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. Пары нуклеотидов аденин и тимин, а так же гуанин и цитозин строго соответствуют друг другу и являются дополнительными или комплементарными. Вот все, что я знаю.


Ответ от Lali Lali [гуру]
Существует два типа нуклеиновых кислот: ДНК и РНК. РНК (рибонуклеиновая кислота) , так же как ДНК, представляет собой полимер мономерами которого служат нуклеотиды.

Пространственную модель молекулы ДНК в 1953 году предложили американские исследователи генетик Джеймс Уотсон (род. 1928) и физик Фрэнсис Крик (род. 1916). За выдающийся вклад в это открытие им была присуждена Нобелевская премия по физиологии и медицине 1962 года.

Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер, мономером которого является нуклеотид. В состав каждого нуклеотида входят остаток фосфорной кислоты, соединенный с сахаром дезоксирибозой, который, в свою очередь, соединен с азотистым основанием. Азотистых оснований в молекуле ДНК четыре вида: аденин, тимин, гуанин и цитозин.

Молекула ДНК состоит из двух длинных цепей, сплетенных между собой в виде спирали, чаще всего, правозакрученной. Исключение составляют вирусы, которые содержат одноцепочную ДНК.

Фосфорная кислота и сахар, которые входят в состав нуклеотидов, образуют вертикальную основу спирали. Азотистые основания располагаются перпендикулярно и образуют «мостики» между спиралями. Азотистые основания одной цепи соединяются с азотистыми основаниями другой цепи согласно принципу комплементарности, или соответствия.

Принцип комплементарности. В молекуле ДНК аденин соединяется только с тимином, гуанин – только с цитозином.

Азотистые основания оптимально соответствуют друг другу. Аденин и тимин соединяется двумя водородными связями, гуанин и цитозин – тремя. Поэтому на разрыв связи гуанин-цитозин требуется больше энергии. Одинаковые по размеру тимин и цитозин гораздо меньше аденина и гуанина. Пара тимин-цитозин была бы слишком мала, пора аденин-гуанин – слишком велика, и спираль ДНК искривилась бы.

Водородные связи непрочны. Они легко разрываются и так же легко восстанавливаются. Цепи двойной спирали под действием ферментов или при высокой температуре могут расходиться, как замок-молния.

5. Молекула рнк Рибонуклеиновая кислота (рнк)

Молекула рибонуклеиновой кислоты (РНК) тоже является биополимером, который состоит из четырех типов мономеров – нуклеотидов. Каждый мономер молекулы РНК содержат остаток фосфорной кислоты, сахар рибозу и азотистое основание. Причем, три азотистых основания такие же, как в ДНК – аденин, гуанин и цитозин, но вместо тимина в РНК присутствует близкий ему по строению урацил. РНК – одноцепочечная молекула.

Количественное содержание молекул ДНК в клетках какого-либо вида практически постоянно, однако количество РНК может существенно меняться.

Виды рнк

В зависимости от строения и выполняемой функции различают три вида РНК.

1. Транспортная РНК (тРНК). Транспортные РНК в основном находятся в цитоплазме клетки. Они переносят аминокислоты к месту синтеза белка в рибосому.

2. Рибосомальная РНК (рРНК). Рибосомальная РНК связывается с определенными белками и образует рибосомы – органеллы, в которых происходит синтез белков.

3. Информационная РНК (иРНК), или матричная РНК (мРНК). Информационная РНК переносит информацию о структуре белка от ДНК рибосоме. Каждая молекула иРНК соответствует определенному участку ДНК, который кодирует структуру одной белковой молекулы. Поэтому для каждого из тысяч белков, которые синтезируются в клетке, имеется своя особенная иРНК.

Дезоксирибонуклеиновая и рибонуклеиновая кислоты или ДНК и РНК, как и белки, являются биополимерами. Оба типа состоят из соединений мономеров – нуклеотидов. Нуклеотид – это самый малый элемент их структуры. Замена или повреждение одного такого мономера вызывает мутацию. Поэтому еще его называют единицей мутации. История открытия и изучения нуклеотидов неразрывно связана с исследованиями кислот.

Честь открытия молекулы ДНК принадлежит Иогану Ф. Мишеру. Произошло это событие в 1869 году в процессе изучения состава и функции клеток лейкоцитов. Выделив из гноя неизвестное вещество, он определил только химический состав и дал ему название. Предположить же какую революцию в науке произведет его открытие ученый не смог.
Долгое время обнаруженному веществу никто не придавал особого значения. Хотя интерес проявляли многие. Прорыв был сделан физиком У.Криком и биологом Д. Уотсоном после многолетних исследований. Именно они в 1953 году опубликовали статью, в которой предложили и доказали строение этой загадочной молекулы. Однообразные сочленения связаны между собой в гигантские закрученные спирали, содержащие целые базы данных наследственной информации. Над расшифровкой информации ученые бьются и в наши дни.
В отличие от своей предшественницы существование РНК предсказали. Изучая синтез белков, исследователи пришли к выводу, что есть некий посредник между ними и ДНК. И в середине 60-х годов ХХ века была обнаружена РНК. Мономеры РНК соединяются между собой в длинные однонитевые цепи.

Как устроены мономеры

Мономеры обеих кислот сходны по своему строению, в каждом из них по три компонента. Мономерами днк и рнк являются следующие компоненты: пятиуглеродный сахар, азотистое основание и остатки фосфорной кислоты. Все составляющие соединены между собой водородными связями. Несмотря на то, что днк и рнк содержат одни и те же химические элементы, они далеко не тождественны. Отличия в составе кислот грубо можно свести к отсутствию в ДНК одного атома кислорода в рибозе, что превращает его в дезоксирибозу, и к тому, что в состав одной входит тимин, а состав другой – урацил. Рибоза и дезоксирибоза также мало отличаются друг от друга, как тимин и урацил. Минимальные различия в строении, однако, наделяют молекулы отличными функциями.
ДНК–это устойчивая и прочная спираль, этим она отличается от РНК. У РНК молекулы закручиваются в клубки, образуют шпильки и иные причудливые формы. Она является не громоздкой, но и неустойчивой. По числу нуклеотидов в молекуле РНК можно подразделить на три вида, информационную, транспортную и рибосомальльную. Она является подвижной, способна накапливать энергию и передавать информацию. Слаженный дуэт этих двух нуклеиновых кислот обеспечивает функционирование всего живого на планете.
Функции и роль мономерных звеньев во всей этой феерии жизни достаточно велика. Каждый из них участвует в ней по-своему. Одни накапливают энергию в клетке, другие контролируют процесс обмена веществ, третьи выступают в роли катализаторов. Три последовательно соединенных нуклеотида образуют триплет. Сочетания триплетов несут в себе информацию о строении белковой клетки, и называются генами. Поэтому нуклеотид еще можно определить как некий информационный носитель.

Применение нуклеотидов

На протяжении всей своей истории человечество не расстается с надеждой найти эликсир молодости. Звенья цепей РНК и ДНК

В середине ХХ века обнаружили функции изолированных нитей ДНК вызывать регенерацию клеток. Сейчас уже разрабатываются косметические средства для омоложения кожи, содержащие «волшебные обрывки спирали».
Расшифровка наследственной информации, содержащейся в нуклеотидах, позволяет бороться с генетическими заболеваниями.
Скандально известные генетически модифицированные продукты также обязаны своим существованием знаниям о строении и свойствах звеньев ДНК.

Применение в медицине

Уже даже то немногое что мы знаем о строении ДНК позволяет применять эти знания на практике. Генная терапия применяется в медицине и основана на введении одного или нескольких нуклеотидов в пораженную клетку, с целью замещения поврежденного участка ДНК. Благодаря этой функции, клетка устраняет дефект и восстанавливает «правильную программу». Эта терапия дает надежду страдающим наследственными заболеваниями. Положительного результата добились впервые в 90-х годах прошлого столетия излечив наследственный иммунодефицит у маленькой девочки. Сейчас известно более 40 заболеваний, при которых она применяется. Проводятся эксперименты по лечению раковых опухолей. Перепрограммируя, при помощи маркированных генов, пораженные клетки и иммунную защиту организма, в половине случаев добиваются положительных результатов. Опухоль уменьшается вдвое. Нельзя сказать, что это успех, но это начало пути к нему. Этим методом пытаются вылечить не только онкологические заболевания, но и победить ВИЧ-инфекцию. Функции, которыми наделены нуклеотиды, активно применяются и в диагностических целях. Существует ряд методик для определения наличия патологических генов у пациентов и возможность мутаций.

Перспективы

Треть заболеваний человека имеют наследственную природу. Считается, что вызывают их повреждения функций хранилищ наследственной информации. Ожидается, что будут изучены причины повреждений и найдены способы их восстановления, что позволит распознавать болезни на ранней стадии и добиваться их полного излечения.
Уже более 20-ти лет существует международный проект «Геном человека». Ученые и исследователи всего мира выясняют последовательность соединения нуклеотидов в ДНК. Развитие новейших технологий позволит решить эту задачу в ближайшем будущем.
Человечество лишь слегка приоткрыло занавес тайны мироздания. Какая еще информация зашифрована в сочленениях ДНК и РНК. К чему могут привести нас эти знания. Даруют ли они нам сверхспособности или же уничтожат нас?

Loading...Loading...