Опыт г менделя. Первый опыт Менделя: основы генетики. Растения гороха, на которых ставил опыты Г.Мендель

В этой статье кратко и понятно описываются три закона Менделя. Эти законы - основа всей генетики, создав их, Мендель фактически создал эту науку.

Здесь Вы найдёте определение каждого закона и узнаете немного нового о генетике и биологии в целом.

Перед началом чтения статьи стоит понимать, что генотип - это совокупность генов организма, а фенотип - его внешних признаков.

Кто такой Мендель и чем он занимался

Грегор Иоганн Мендель - известный австрийский биолог, родившийся в 1822 году в деревне Гинчице. Хорошо учился, но у семьи его были материальные трудности. Чтобы разобраться с ними, Иоганн Мендель в 1943 году решил стать монахом чешского монастыря в городе Брно и получил там имя Грегор.

Грегор Иоганн Мендель (1822 — 1884)

Позже изучал биологию в Венском университете, а затем решил преподавать физику и природоведение в Брно. Тогда же учёный заинтересовался ботаникой. Он проводил опыты по скрещиванию гороха. На основе результатов этих опытов учёный вывел три закона наследственности, которым и посвящена эта статья.

Опубликованные в работе «Опыты с гибридами растений» в 1866 году, эти законы не получили широкой огласки, и вскоре работа была забыта. О ней вспомнили лишь после смерти Менделя в 1884 году. Вам уже известно, сколько законов он вывел. Теперь пора перейти к рассмотрению каждого.

Первый закон Менделя - закон единообразия гибридов первого поколения

Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого - белые.

Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

На основе этих опытов учёный вывел свой первый закон, вот его формулировка: все гибриды в первом поколении всегда наследуют лишь один признак от родителей.

Обозначим ген, отвечающий за пурпурные цветки, как A, а за белые- a. Генотип одного родителя - AA (пурпурные), а второго - aa (белые). От первого родителя будет унаследован ген A, а от второго - a. Значит, генотип потомства всегда будет Aa. Ген, обозначенный заглавной буквой, называется доминантным, а строчной - рецессивным.

Если в генотипе организма содержатся два доминантных или два рецессивных гена, то его называют гомозиготным, а организм, содержащий разные гены - гетерозиготным. Если организм гетерозиготен, то рецессивный ген, обозначаемый прописной буквой, подавляется более сильным доминантным, в результате проявляется признак, за который отвечает доминантный. Значит, горох с генотипом Aa будет обладать пурпурными цветками.

Скрещивание двух гетерозиготных организмов с разными признаками - это моногибридное скрещивание.

Кодоминирование и неполное доминирование

Бывает такое, что доминантный ген не может подавить рецессивный. И тогда в организме проявляются оба родительских признака.

Такое явление можно наблюдать на примере камелии. Если в генотипе этого растения один ген отвечает за красные лепестки, а другой - за белые, то половина лепестков камелии станут красными, а остальные - белыми.

Такое явление называют кодоминированием.

Неполное доминирование - похожее явление, при котором появляется третий признак, нечто среднее между тем, что было у родителей. Например, цветок ночная красавица с генотипом, содержащим и белые, и красные лепестки, окрашивается в розовый.

Второй закон Менделя - закон расщепления

Итак, мы помним, что при скрещивании двух гомозиготных организмов всё потомство примет лишь один признак. Но что, если взять из этого потомства два гетерозиготных организма и скрестить их? Будет ли потомство единообразным?

Вернёмся к гороху. Каждый родитель с равной вероятностью передаст либо ген A, либо ген a. Тогда потомство разделится следующим образом:

  • AA - пурпурные цветки (25%);
  • aa - белые цветки (25%);
  • Aa - пурпурные цветки (50%).

Видно, что организмов с пурпурными цветками в три раза больше. Это явление расщепления. В этом и заключается второй закон Грегора Менделя: при скрещивании гетерозиготных организмов потомство расщепляется в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Впрочем, существуют так называемые летальные гены. При их наличии происходит отклонение от второго закона. Например, потомство жёлтых мышей расщепляется в соотношении 2:1.

То же происходит и с лисицами платинового цвета. Дело в том, что если в генотипе этих (и некоторых других) организмов оба гена доминантные, то они просто погибают. В результате доминантный ген может проявляться только если организм гетерозиотен.

Закон чистоты гамет и его цитологическое обоснование

Возьмём жёлтый горох и зелёный горох, ген жёлтого цвета - доминантный, а зелёного - рецессивный. В гибриде будут содержаться оба этих гена (хотя мы увидим лишь проявление доминантного).

Известно, что от родителя к потомству гены переносятся с помощью гамет. Гамета - это половая клетка. В генотипе гибрида имеется два гена, выходит, в каждой гамете - а их две - находилось по одному гену. Слившись, они образовали генотип гибрида.

Если во втором поколении проявился рецессивный признак, характерный одному из родительских организмов, значит, выполнялись следующие условия:

  • наследственные факторы гибридов не изменялись;
  • каждая гамета содержала в себе один ген.

Второй пункт - закон чистоты гамет. Конечно, гена не два, их больше. Существует понятие аллельных генов. Они отвечают за один и тот же признак. Зная это понятие, можно сформулировать закон так: в гамету проникает по одному, случайно выбранному, гену из аллели.

Цитологическая основа данного правила: клетки, в которых находятся содержащие пары аллелей хромосомы со всей генетической информацией, делятся и образуют клетки, в которых есть лишь по одной аллели - гаплоидные клетки. В данном случае это гаметы.

Третий закон Менделя - закон независимого наследования

Выполнение третьего закона возможно при дигибридном скрещивании, когда исследуется не один признак, а несколько. В случае с горохом это, например, цвет и гладкость семян.

Гены, отвечающие за цвет семян, обозначим как A (жёлтый) и a (зелёный); за гладкость - B (гладкие) и b (морщинистые). Попробуем провести дигибридное скрещивание организмов с разными признаками.

Первый закон не нарушается при таком скрещивании, то есть гибриды будут одинаковы и по генотипу (AaBb), и по фенотипу (с жёлтыми гладкими семенами).

Каким же будет расщепление во втором поколении? Чтобы это узнать, необходимо выяснить, какие гаметы могут выделить родительские организмы. Очевидно, это AB, Ab, aB и ab. После этого строится схема, называемая решёткой Пиннета.

По горизонтали перечисляются все гаметы, которые может выделить один организм, а по вертикали - другой. Внутри решётки записывается генотип организма, который появился бы при данных гаметах.

AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

Если изучить таблицу, можно прийти к выводу, что расщепление гибридов второго поколения по фенотипу происходит в соотношении 9:3:3:1. Это понял и Мендель, проведя несколько экспериментов.

Помимо этого он также пришёл к выводу, что то, какой из генов одной аллели (Aa) попадёт в гамету, не зависит от другой аллели (Bb), то есть существует только независимое наследование признаков. Это и есть его третий закон, называемый законом независимого наследования.

Заключение

Три закона Менделя - основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел - генетику.

С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика - это один из самых интересных и перспективных разделов биологии.


Грегор Мендель. Биография Менделя. Опыты Менделя. Законы Менделя.

Грегор Ян (Иоганн) Мендель 1822–1884 гг.

Грегор Ян (Иоганн) Мендель родился 22 июля 1822 г. в чешской деревушке Нинчице в семье бедного крестьянина. Местную школу он окончил в одиннадцатилетнем возрасте, после чего поступил в Опавскую гимназию. Мендель с юности отличался выдающимися способностями к математике, интересовался жизнью природы, вел наблюдения за садовыми цветами и пчелами в отцовском саду.

В 1840 г. он поступил на философский факультет университета в Оломоуце, но семейные неурядицы и болезнь помешали Менделю закончить образование. В 1843 г. он постригся в монахи и в августианском монастыре города Брно получил новое имя – Грегор.

Сразу же после посвящения Мендель стал изучать теологию и посещать лекции по сельскому хозяйству, шелкоразведению и виноградарству. Начиная с 1848 г., он стал преподавать латинский, греческий, немецкий языки и математику в гимназии города Знойно. В 1851–1853 гг. Мендель слушал лекции по естествознанию в Венском университете. Через несколько лет он стал настоятелем монастыря и получил возможность вести свои знаменитые опыты по гибридизации гороха (1856–1863 гг.) в монастырском саду. Мендель был первым биологом, начавшим систематические исследования наследственных свойств у растений по методу гибридизации.

После семилетних экспериментов Мендель доказал, что каждая из 22 разновидностей гороха при скрещивании сохраняет свои индивидуальные свойства. При этом он точно определил свойства, по которым следует различать отдельные виды гороха.

Скрещивая различные виды и изучая их свойства, Мендель пришел к убеждению, что некоторые признаки переходят на потомство непосредственно, он назвал их преобладающими свойствами; другие же признаки, появляющиеся через одно поколение, – рецессивными, т.е. уступающими свойствами,. Одновременно он установил, что при скрещивании двух сортов новое поколение наследует характерные черты родительских форм, причем происходит это по определенным правилам.

Явления, которые наблюдал Мендель, были позднее проверены и подтверждены многочисленными ботаниками и зоологами. Важно было убедиться, что правила Менделя носят всеобщий характер. Согласно этим правилам, наследственные черты переходят на потомство не только у растений, но и у животных, не исключая человека. Теперь принято эти правила называть Первым Законом Менделя или законом сегрегации. Этот Закон гласит: "Свойства двух организмов при их скрещиваии переходят на потомство, хотя некоторые из них могут быть скрытыми. Эти свойства обязательно проявляются во втором поколении гибридов".

Врожденные математические способности позволили Менделю дать количественные определения явления наследственности и обобщить экспериментальный материал в количественном отношении. Свои многолетние наблюдения и выводы из них он доложил 8 февраля и 8 марта 1865 г. Научному природоведческому обществу в Брно, однако математические формулы, приведенные Менделем в отчете, не были понятны биологами.

В соответствии с существовавшими тогда обычаями отчет Менделя переслали в Вену, Рим, Петербург, Упсалу, Краков и в другие города, но никто не обратил на него внимания. Смесь математики с ботаникой противоречила всем бытовавшим тогда представлениям. В те времена считалось, что родительские свойства смешиваются у потомства подобно кофе с молоком.

Наука о законах наследственности была названа "менделизмом" в честь трудолюбивого исследователя жизни растений. Английский биолог Уильям Бетсон в 1906 г. назвал эту науку генетикой.

Заслуга Менделя заключается в том, что он сумел поставить перед собой точную научную задачу, выбрать превосходный растительный материал для проведения опытов и упростить метод наблюдений путем рассмотрения небольшого числа отдельных свойств, по которым исследуемые виды отличаются друг от друга, не учитывая всех других второстепенных признаков. Кроме того, будучи прекрасным математиком, Мендель выразил результаты своих опытов с помощью математических формул.

Можно утверждать, что Мендель стал основоположником новой отрасли биологии - генетики, хотя сам ничего не знал о существовании хромосом и носителей наследственных свойств, названных в 1909 г. датским исследователем Иоганнсеном генами.

Мендель был принят в члены многих научных обществ: метеорологического помологического, пчеловодческого и др.

Умер Мендель 6 января 1884 г. в городе Старое Брно. 4 – 7 августа 1965 г. в ознаменование сотой годовщины опубликования труда Менделя, положившего начало генетике, состоялся большой съезд ученых.

В качестве символической эмблемы съезда был принят рисунок, изображающий цветок гороха и модель строения частички ДНК.

Работы Г. Менделя и их значение
Честь открытия основных закономерностей наследования признаков, наблюдающихся при гибридизации, принадлежит Грегору (Иоганну) Менделю (1822–1884) – выдающемуся австрийскому естествоиспытателю, настоятелю августинского монастыря Св.Фомы в г. Брюнне (ныне г. Брно)

Главной заслугой Г. Менделя является то, что для описания характера расщепления он впервые применил количественные методы, основанные на точном подсчете большого числа потомков с контрастирующими вариантами признаков. Г. Мендель выдвинул и экспериментально обосновал гипотезу о наследственной передаче дискретных наследственных факторов. В его работах, выполнявшихся в период с 1856 по 1863 г., были раскрыты основы законов наследственности. Результаты своих наблюдений Г. Мендель изложил в брошюре «Опыты над растительными гибридами» (1865).

Мендель следующим образом формулировал задачу своего исследования. «До сих пор,– отмечал он во «Вступительных замечаниях» к своей работе,– не удалось установить всеобщего закона образования и развития гибридов… Окончательное решение этого вопроса может быть достигнуто только тогда, когда будут произведены детальные опыты в различнейших растительных семействах. Кто пересмотрит работы в этой области, тот убедится, что среди многочисленных опытов ни один не был произведен в том объеме и таким образом, чтобы можно было определить число различных форм, в которых появляются потомки гибридов, с достоверностью распределить эти формы по отдельным поколениям и установить их взаимные численные отношения».

Первое, на что Мендель обратил внимание, – это выбор объекта. Для своих исследований Мендель выбрал удобный объект – чистые линии (сорта) гороха посевного (Pisum sativum L.), различающиеся по одному или немногим признакам. Горох как модельный объект генетических исследований характеризуется следующими особенностями:

1. Это широко распространенное однолетнее растение из семейства Бобовые (Мотыльковые) с относительно коротким жизненным циклом, выращивание которого не вызывает затруднений.

2. Горох – строгий самоопылитель, что снижает вероятность заноса нежелательной посторонней пыльцы. Цветки у гороха мотылькового типа (с парусом, веслами и лодочкой); в то же время строение цветка гороха таково, что техника скрещивание растений относительно проста.

3. Существует множество сортов гороха, различающихся по одному, двум, трем и четырем наследуемым признакам.

Едва ли не самым существенным во всей работе было определение числа признаков, по которым должны различаться скрещиваемые растения. Мендель впервые осознал, что, только начав с самого простого случая – различия родителей по одному-единственному признаку – и постепенно усложняя задачу, можно надеяться распутать клубок фактов. Строгая математичность его мышления выявилась здесь с особенной силой. Именно такой подход к постановке опытов позволил Менделю четко планировать дальнейшее усложнение исходных данных. Он не только точно определял, к какому этапу работы следует перейти, но и математически строго предсказывал будущий результат. В этом отношении Мендель стоял выше всех современных ему биологов, изучавших явления наследственности уже в XX в.

Описание опытов Менделя .

Мендель проводил свои опыты в монастырском саду на небольшом участке площадью 35×7 м. Первоначально он выписал из различных семеноводческих ферм 34 сорта гороха. В течение двух лет Мендель высевал эти сорта на отдельных делянках и проверял, не засорены ли полученные сорта, сохраняют ли они свои признаки неизменными при размножении без скрещиваний. После такого рода проверки он отобрал для экспериментов 22 сорта.

Мендель начал с опытов по скрещиванию сортов гороха, различающихся по одному признаку (моногибридное скрещивание). Для этих опытов он использовал сорта гороха, различающиеся по ряду признаков:


Признаки

Альтернативные варианты признаков

Доминантные

Рецессивные

Форма зрелых семян

Круглые

Морщинистые

Окраска семядолей

Желтая

Зеленая

Окраска семенной кожуры

Серая

Белая (полупрозрачная)

Окраска цветков

Пурпурные

Белые

Форма зрелых бобов

Выпуклые

С перехватами

Окраска незрелых бобов

Зеленые

Желтые

Расположение цветков

Пазушное

Верхушечное

Высота растения

Высокие

Низкие

Наличие пергаментного слоя

Имеется

Отсутствует

Рассмотрим некоторые из опытов Менделя подробнее.
Опыт 1 . Скрещивание сортов, различающихся по окраске цветков.

Первый год . На двух смежных делянках выращивалось два сорта гороха, различающихся по окраске цветков: пурпурноцветковый и белоцветковый. В фазе бутонизации Мендель произвёл кастрацию части цветков на пурпурноцветковых растениях: он аккуратно разрывал лодочку и удалял все 10 тычинок. Затем на кастрированный цветок надевался изолятор (трубка из пергамента), чтобы исключить случайный занос пыльцы. Через несколько дней (в фазе цветения), когда пестики кастрированных цветков становились готовыми к восприятию пыльцы, Мендель произвёл скрещивание: он снял изоляторы с кастрированных цветков пурпурноцветкового сорта и нанёс на рыльца их пестиков пыльцу с цветков белоцветкового сорта; после этого на опыленные цветки вновь надевались изоляторы. После завязывания плодов изоляторы снимались. После созревания семян Мендель собрал их с каждого искусственно опыленного растения в отдельную тару.

Второй год . На следующий год Мендель вырастил из собранных семян гибридные растения – гибридов первого поколения. На всех этих растениях образовались пурпурные цветки, несмотря на то, что материнские растения были опылены пыльцой с белоцветкового сорта. Мендель предоставил этим гибридам возможность неконтролируемого опыления (самоопыления). После созревания семян Мендель вновь собрал их с каждого растения в отдельную тару.

Третий год . На третий год Мендель вырастил из собранных семян гибридов второго поколения. Часть этих растений дала только пурпурные цветки, а часть только белые, причем пурпурноцветковых растений оказалось примерно в 3 раза больше, чем белоцветковых.
Опыт 2 . Скрещивание сортов, различающихся по окраске семядолей.

Особенность этого опыта в том, что окраска горошин (при полупрозрачной семенной кожуре) определяется окраска семядолей, а семядоли являются частью зародыша – нового растения, сформировавшегося под защитой материнского растения.

Первый год . На двух смежных делянках выращивалось два сорта гороха, различающихся по окраске семядолей: желтосемяный и зеленосемянный. Мендель произвёл кастрацию части цветков на растениях, выращенных из желтых семян, с последующей изоляцией кастрированных цветков. В фазе цветения Мендель произвел скрещивание: на рыльца пестиков кастрированных цветков он нанес пыльцу с цветков растений, выращенных из зеленых семян. Искусственно опыленные цветки дали плоды только с желтыми семенами, несмотря на то, что материнские растения были опылены пыльцой с зеленосемянного сорта (еще раз подчеркнем, что окраска этих семян определялась окраской семядолей зародышей, которые уже являются гибридами первого поколения). Полученные семена Мендель также собрал с каждого искусственно опыленного растения в отдельную тару.

Второй год . На следующий год Мендель вырастил из собранных семян гибридные растения – гибридов первого поколения. Как и в предыдущем опыте, он предоставил этим гибридам возможность неконтролируемого опыления (самоопыления). После созревания плодов Мендель обнаружил, что внутри каждого боба встречаются и желтые, и зеленые горошины. Мендель подсчитал общее количество горошин каждого цвета и обнаружил, что желтых горошин примерно в 3 раза больше, чем зеленых.

Таким образом, опыты с изучением морфологии семян (окраски их семядолей, формы поверхности семян) позволяют получить результаты уже на второй год.
Скрещивая растения, различающиеся и по другим признакам, Мендель во всех без исключения опытах получил аналогичные результаты: всегда в первом гибридном поколении проявлялся признак только одного из родительских сортов, а во втором поколении наблюдалось расщепление в соотношении 3:1.

На основании своих экспериментов Мендель ввел понятие доминантного и рецессивного признаков. Доминантные признаки переходят в гибридные растения совершенно неизменными или почти неизменными, а рецессивные становятся при гибридизации скрытыми. Заметим, что к подобным выводам пришли французские естествоиспытатели Сажрэ и Нодэн, которые работали с тыквенными растениями, имеющими раздельнополые цветки. Однако величайшая заслуга Менделя в том, что он впервые сумел дать количественную оценку частотам появления рецессивных форм среди общего числа потомков.

Для дальнейшего анализа наследственной природы полученных гибридов Мендель проводил скрещивания между сортами, различающимся по двум, трем и более признакам, то есть проводит дигибридное и тригибридное скрещивания. Далее он изучил еще несколько поколений гибридов, скрещиваемых между собой. В результате получили прочное научное обоснование следующие обобщения фундаментальной важности:

1. Явление неравнозначности наследственных элементарных признаков (доминантных и рецессивных), отмеченное Сажрэ и Нодэном.

2. Явление расщепления признаков гибридных организмов в результате их последующих скрещиваний. Были установлены количественные закономерности расщепления.

3. Обнаружение не только количественных закономерностей расщепления по внешним, морфологическим признакам, но и определение соотношения доминантных и рецессивных задатков среди форм, с виду не отличимых от доминантных, но являющихся смешанными (гетерозиготными) по своей природе. Правильность последнего положения Мендель подтвердил, кроме того, путем возвратных скрещиваний гибридов первого поколения с родительскими формами.

Таким образом, Мендель вплотную подошел к проблеме соотношения между наследственными задатками (наследственными факторами) и определяемыми ими признаками организма. Мендель ввел понятие дискретного наследственного задатка, не зависящего в своем проявлении от других задатков. Эти задатки сосредоточены, по мнению Менделя, в зачатковых (яйцевых) и пыльцевых клетках (гаметах). Каждая гамета несет по одному задатку. Во время оплодотворения гаметы сливаются, формируя зиготу; при этом в зависимости от сорта гамет, возникшая из них зигота получит те или иные наследственные задатки. За счет перекомбинации задатков при скрещиваниях образуются зиготы, несущие новое сочетание задатков, чем и обусловливаются различия между индивидуумами.

1 этап. Организационный.

Здравствуйте, ребята. Присаживайтесь. Мы начинаем урок биологии. Проверьте вашу готовность к уроку.

2этап. Постановка задач урока.

Какие задачи нам предстоит сегодня решить?

(повторить основные генетические понятия, законы Менделя о наследовании признаков,

Развивать внимание, память, логическое мышление.

Воспитывать интерес к предмету, эстетическое воспитание.

3 этап. Проверка домашнего задания.

Какое д/з было вам задано?

Повторить основные понятия генетики, законы Менделя, представить в виде презентации свое домашнее задание.

Вы, ребята, вспомнили основные положения работ Грегора Менделя, а теперь проверим, насколько хорошо вы это усвоили и запомнили материал. Перед вами тест по домашней работе.

1. Грегор Мендель на начальном этапе эксперимента использовал в качестве родительских растений гороха

А) чистые линии.

Б) гетерозиготные особи

В) гомозиготные особи по рецессивному гену.

Г) одну гетерозиготную, а другую – гомозиготную особь по рецессивному гену.

2. В экспериментах Г. Менделя гомозиготными особями с обоими рецессивными признаками были растения гороха с семенами.

А) желтыми и морщинистыми.

Б) желтыми и гладкими.

В) зелеными и морщинистыми.

Г) зелеными и гладкими.

3. Моногибридное скрещивание – это получение

А) первого поколения гибридов.

Б) стабильных гибридов.

В) гибридов, родители которых отличаются друг от друга по одному признаку.

Г) ни один ответ не верен.

4. В соответствии с законом Г. Менделя расщепление признаков у гибридов наблюдается

А) в первом поколении.

Б) во втором поколении.

В) в третьем поколении.

Г) в четвертом поколении.

5. Закон независимого распределения Менделя выполняется только тогда, когда

А) гены разных аллелей находятся в одних и тех же хромосомах.

Б) гены разных аллелей находятся в разных хромосомах.

В) аллели рецессивны,

Г) аллели доминантны.

6. при дигибридном скрещивании число классов по фенотипу во втором поколении равно

Г) ни один ответ не верен.

7. при дигибридном скрещивании число классов по генотипу равно

Г) ни один ответ не верен.

8. При фенотипе семени гороха: желтое и гладкое (оба признака доминантны) число генотипов равно

КЛЮЧ К ТЕСТУ: (на слайде)

Самопроверка.

4этап. Побуждение учащихся к усвоению новых знаний.

Мы уже кое-что знаем о генах, наследственности и изменчивости, но сегодня нам предстоит узнать еще больше.(слайд стемой и целью)

Итак, тема урока: ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ».

Цель: познакомиться с основными положениями хромосомной теории наследственности Томаса Моргана; обосновать необходимость этих знаний в повседневной жизни.

5этап. Ознакомление с новым материалом.

В середине 19 века, когда Г. Мендель проводил свои эксперименты и формулировал закономерности, научных знаний было еще недостаточно для понимания механизмов наследования. Именно поэтому в течение долгих лет работы Менделя были невостребованными.

В начале 20века были открыты митоз и мейоз, заново переоткрыты законы Менделя, исследователи Германии и США предполагали, что наследственные факторы расположены в хромосомах.

1906г. Реджиналд Пеннет впервые описал нарушение менделеевского закона независимого наследования двух признаков. Провел опыт дигибридного скрещивания растений душистого горошка, отличающихся по окраске цветков и форме пыльцы, во втором поколении Пеннет не получил ожидаемого расщепления 9:3:3:1. гибриды F2 имели только родительские фенотипы в соотношении 3:1, т. е. перераспределения признаков не произошло.

Постепенно противоречия накапливались. Возникал вопрос, а как именно расположены гены в хромосомах? Ведь число признаков, а следовательно и генов, отвечающих за разные признаки больше, нежели самих хромосом.

Как же наследуются гены, расположенные в одной хромосоме?

Презентация про хромосомы.

На эти вопросы смогла ответить группа американских ученых, возглавляемая Томасом Морганом, они установили, что гены, находящиеся в одной хромосоме, наследуются совместно, т.е. сцеплено. Это явление получило название закона Моргана.

Группы генов, расположенные в одной хромосоме, были названы группой сцепления.

1911г. – создание хромосомной теории наследственности.

Основные положения:

Единица наследственности – ген, который представляет собой участок хромосомы.

Гены расположены в хромосомах в строго определенных местах (локусах), причем аллельные гены (отвечающие за развитие одного признака) расположены в одинаковых локусах гомологичных хромосом.

Гены расположены в хромосомах в линейном порядке, т. е.друг с другом.

Презентация.

В некоторых случаях скрещивания было обнаружено нарушение сцепления. Найдите об этом сведения в учебнике на странице 153. кратко пометьте себе в тетрадь об этом.

Один из учеников зачитывает, что записал.

Найдите, что такое генетические карты? Работаем в тетради аналогично.

6этап. Закрепление изученного материала.

Перед вами рабочий лист. Вам необходимо постараться вспомнить о чем говорили, что записывали и по возможности заполнить рабочий лист в течении трех минут. Дальше проверим, что вы запомнили и оформляем рабочий лист с помощью учебника.

Рабочий лист.

1. В каком веке были открыты митоз и мейоз, и переоткрыты законы Менделя?

______________________________________________________________________________

2. В 1906г. Р. Пеннет впервые__________________________________________________________________

3. Т. Морган и его группа проводили исследования на __________________________________________________________________________

и установили, что гены _____________________________________________________________________________________________________________________.

4.Это явление получило название _____________________________________________________________________________________________________________________.

5.группа сцепления – это______________________________________________________________________________________________________________________________________________________ .

6.У человека ____пары хромосом и, следовательно, ____группы сцепления, у гороха____пар хромосом, и, следовательно, __группы сцепления.

7.Итогом работы Т. моргана явилось создание______________________________________________________________________

8. основные положения теории.

______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

8.нарушения сцепления ____________________________________________________________________________________________________________________

9. генетические карты_____________________________________________________________________________________________________________________________________________________________________________________________________________.

ТЕСТ НА ЗАКРЕПЛЕНИЕ.

1. Т. Морган создал хромосомную теорию наследственности в

А) 1902году.

2. Моргана касается

А)дигибридного скрещивания.

Б) чистоты гамет.

В) неполного доминирования.

Г) сцепления генов.

3.ген, который представляет собой участок хромосомы – это

А) единица наследственности.

Б) единица изменчивости.

4Схема взаимного расположения генов, находящихся в одной группе сцепления, т. е. в одной хромосоме, это –

А)нарушение сцепления,

Б) генетическая карта.

7 этап. Обобщение.

Блиц-опрос «Ты –мне, я – тебе».

Перед вами карточка с десятью вопросами. Вы по очереди задаете их друг другу по 5вопросов.

1. Сформулируйте первый закон Менделя.

2. В чем отличие хромосомного набора самца от хромосомного набора самки?

3. сформулируйте второй закон Менделя.

4. что такое мутации?

5. что такое генетика?

6. сформулируйте третий закон Менделя.

7. Сформулируйте закон Моргана.

8. В чем сущность наследования, сцепленного с полом?

9. что такое генотип?

10. что такое фенотип?.

Оценка в оценочный лист.

С какой темой познакомились на уроке?

Какие цели ставили? Смогли добиться этих целей?

Насколько важно знать особенности наследования для человечества?

Ответ на этот вопрос постараемся дать, посмотрев презентацию.

Презентация «наследственные заболевания».

На знании закономерностей хромосомных перестроек основывается изучение наследственных заболеваний человека.

Х. т.н. в настоящее время развивается в направлении углубления знаний об универсальных носителях наследственной информации – молекулах ДНК.

Х. т.н., объясняя закономерности наследования признаков у животных и растительных организмов, играет важную роль в сельско-хозяйственной науке и практике. Она вооружает селекционеров методами выведения пород животных и сортов растений с заданными свойствами. Некоторые положения х. т.н. позволяют более рационально вести с\х производство.

Домашнее задание. Стр.150-153.

Решить задачи с карточки.

Задача №1. Иск в суд.

Женщина с группой крови ВВ возбудила дело о взыскании алиментов против мужчины с первой группой крови, утверждая, что он отец ее ребенка, т. к. и у него первая группа крови. Какое решение должен вынести суд?

Задача №2. Розовая мечта.

Ольге очень нравятся голубые глаза, но она, ее родители и родственники всегда имели только карие глаза. Поэтому она решила, во что бы то ни стало выйти замуж за голубоглазого мужчину, чтобы у ее ребенка были голубые глаза. Выполнима ли мечта девушки?

Задача №3. Детский вопрос.

Таня и Аня однояйцовые сестры-близнецы, а Толя и Коля - однояйцовые братья-близнецы (дети других родителей). Толя женится на Тане, а Коля на Ане. В обеих семьях рождаются сыновья. Интересно, будут ли мальчики похожи друг на друга так же как однояйцовые братья-близнецы?

Задача №4. Жалоба.

Время от времени в газеты приходят письма от женщин с жалобами на мужей, которые их упрекают за то, что вместо сыновей у них рождаются дочери. Справедливы ли их упреки?

Задача №5. Семейная тайна.

После свадьбы молодой супруге “доброжелатели” открыли семейную тайну ее мужа. Оказалось, что и ее мужу и его братьям, и их отцу в раннем детстве была сделана операция по ликвидации синдактилии (врожденного сращивания указательного и среднего пальцев на правой руке). Будущая мама обратилась за советом к медикам. Какова вероятность рождения у нее ребенка с такой патологией?

Задача №6. Ошибка режиссера.

В фильме “Не валяй дурака” у белой женщины, отец которой был негр, и белого мужчины родился черный ребенок. Возможно ли это?

Задача №7. Чья наследственность?

Отец и сын – дальтоники, а мать различает цвета нормально. Правильно ли будет сказать, что в этой семье сын унаследовал недостаток зрения от отца?

Задача №8 Плутовство.

За последние 20 лет эту процедуру в России прошли 12 тысяч спортсменов и сняты с соревнований 16 человек. В спортивных состязаниях отдельные мужчины пытаются выиграть у женщин, перевоплощаясь в женское обличье. Оказывается такое плутовство возможно. Предположите способ определения пола, который бы исключал любые ошибки.

Рекламный ролик зубной пасты компании “Колгейт” красочно описывал чудодейственное свойство по отбеливанию зубов. Увидев ролик, Николай накупил зубной пасты и добросовестно чистил зубы два раза в день длительное время. Однако эффект отбеливания не проявлялся. Разозленный Николай подал иск в суд на компанию за шарлатанство. В ответ, чтобы себя защитить, компания обратилась в медико-генетическую консультацию. Почему?

Задача №10.

В родильном доме перепутали двух детей. Родители одного из них имеют 1 и 2 группы крови, родители другого 2 и 4 группы крови. Дети имеют 1 и 2 группы крови. Определите где чей ребенок.

Задача №1 . Иск в суд.

Отказать, т. к. у женщины с группой крови ВВ и мужчины с первой группой крови не может быть ребенок с первой группой крови, это обман.

Задача №2. Розовая мечта.

Мечта выполнима только во втором поколении (у внуков) при условии, что ее ребенок женится или выйдет замуж за человека с голубыми глазами.

Задача№3 Детский вопрос.

Теоретически, мальчики могут быть похожи как близнецы, если их родители гомозиготны по всем без исключения признакам, практически невозможно, так как по многим признакам человек гетерозиготен.

Задача №4 Жалоба.

Нет, так как пол ребенка зависит от типа сперматозоида, оплодотворившего яйцеклетку.

Задача №5 Семейная тайна.

Все мальчики данной семьи будут наследовать данный признак, так как он сцеплен с Y - хромосомой.

Задача №6 Ошибка режиссера.

Женщина, у которой черный отец не может быть белой по цвету кожи (АаВв – средний мулат), и тем более у нее не может родиться ребенок с черной кожей от белого мужчины.

Задача №7 Чья наследственность?

Нет, так как данный признак сцеплен с Х хромосомой, а ее сын получает только от матери, значит, мать является носителем дальтонизма в данной семье.

Задача №8 Плутовство.

Необходимо взять пробу клеток полости рта и проверить соответствие половых хромосом, Х и У хромосому хирургическим путем изменить нельзя.

Существует 2 причины потемнения зубной эмали: неправильный уход и признак потемнения зубов сцепленный с Х хромосомой. Если причина вторая, то компания иск в суде выигрывает.

Задача №10 .

Родители с 1 и 2 группой крови – могут иметь ребенка с 1 группой, а родители с 2 и 4 группой - соответственно с 2 группой крови.

Мендель Грегор Иоганн

Австрийский священник и ботаник Грегор Иоганн Мендель заложил основы такой науки, как генетика. Он математически вывел законы генетики, которые называются сейчас его именем.

Грегор Иоганн Мендель

Иоганн Мендель родился 22 июля 1822 года в Хайзендорфе, Австрия. Ещё в детстве он начал проявлять интерес к изучению растений и окружающей среды. После двух лет учебы в Институте Философии в Ольмютце Мендель решил уйти в монастырь в Брюнне. Это произошло в 1843 году. При обряде пострижения в монахи ему было дано имя Грегор. Уже в 1847 году он стал священником.

Жизнь священнослужителя состоит не только из молитв. Мендель успевал много времени посвящать учебе и науке. В 1850 году он решил сдать экзамены на диплом учителя, однако провалился, получив "два" по биологии и геологии. 1851-1853 годы Мендель провел в Университете Вены, где изучал физику, химию, зоологию, ботанику и математику. По возвращении в Брюнн отец Грегор начал все-таки преподавать в школе, хотя так никогда и не сдал экзамен на диплом учителя. В 1868 году Иоганн Мендель стал аббатом.

Свои эксперименты, которые, в конце концов, привели к сенсационному открытию законов генетики, Мендель проводил в своем маленьком приходском саду с 1856 года. Надо отметить, что окружение святого отца способствовало научным изысканиям. Дело в том, что некоторые его друзья имели очень хорошее образование в области естествознания. Они часто посещали различные научные семинары, в которых участвовал и Мендель. Кроме того, монастырь имел весьма богатую библиотеку, завсегдатаем которой был, естественно, Мендель. Его очень воодушевила книга Дарвина "Происхождение видов", но доподлинно известно, что опыты Менделя начались задолго до публикации этой работы.

8 февраля и 8 марта 1865 году Грегор (Иоганн) Мендель выступал на заседаниях Общества Естествознания в Брюнне, где рассказал о своих необычных открытиях в неизвестной пока области (которая позже станет называться генетикой). Опыты Грегор Мендель ставил на простых горошинах, однако, позже спектр объектов эксперимента был значительно расширен. В результате, Мендель пришел к выводу, что различные свойства конкретного растения или животного появляются не просто из воздуха, а зависят от "родителей". Информация об этих наследственных свойствах передается через гены (термин, введенный Менделем, от которого произошел термин "генетика"). Уже в 1866 году вышла книга Менделя "Versuche uber Pflanzenhybriden" ("Эксперименты с растительными гибридами"). Однако современники не оценили революционность открытий скромного священника из Брюнна.

Научные изыскания Менделя не отвлекали его от повседневных обязанностей. В 1868 году он стал аббатом, наставником целого монастыря. В этой должности он отлично отстаивал интересы церкви в целом и монастыря Брюнна, в частности. Ему хорошо удавалось избегать конфликтов с властями и уходить от избыточного налогообложения. Его очень любили прихожане и ученики, молодые монахи.

6 января 1884 года отца Грегора (Иоганна Менделя) не стало. Он похоронен в родном Брюнне. Слава как ученого пришла к Менделю уже после смерти, когда подобные его экспериментам опыты в 1900 году были независимо проведены тремя европейскими ботаниками, которые пришли к аналогичным с Менделем результатам.

Грегор Мендель- учитель или монах?

Судьба Менделя после Богословского института уже устроена. Рукоположенный в священники двадцатисемилетний каноник получил превосходный приход в Старом Брюнне. Он уже целый год готовится сдавать экзамены на степень доктора богословия, когда в его жизни происходят серьезные изменения. Георг Мендель решает довольно резко изменить свою судьбу и отказывается от несения религиозной службы. Он хотел бы изучать природу и ради этой своей страсти решает занять место в Цнаймской гимназии, где к этому времени открывается 7 класс. Он испрашивает место “супплента-профессора”.

В России “профессор”- звание чисто университетское, а в Австрии и Германии так величали даже наставника первоклашек. Гимназический суплент - это скорее, можно перевести как “заурядный учитель”, “помощник учителя”. Это мог быть человек, прекрасно владеющий предметом, но так как он не имел диплома, принимали его на работу скорее временно.

Сохранился и документ, поясняющий столь необычное решение пастора Менделя. Это официальное письмо епископу графу Шафготчу от настоятеля монастыря Святого Томаша прелата Наппа.” Ваше Милостивое Епископское Преосвященство! Высокий Императорско-Королевский Земельный Президиум декретом от 28 сентября 1849 года за № Z 35338 почел за благо назначить каноника Грегора Менделя супплентом в Цнаймскую гимназию. “... Оный каноник образ жизни имеет богобоязненный, воздержанием и добродетельным поведением, его сану полностью соответствующим, сочетающимся с большой преданностью наукам... К попечению же о душах мирян он, однако, пригоден несколько менее, ибо стоит ему очутиться у одра больного, как от вида страданий он бывает, охватываем непреодолимым смятением и сам от сего становится опасно больным, что и побуждает меня сложить с него обязанности духовника “.

Итак, осенью 1849 года каноник и супплент Мендель прибывает в Цнайм, дабы приступить к новым обязанностям. Мендель получает на 40 процентов меньше своих коллег, имевших дипломы. Он пользуется уважением у своих коллег, его любят ученики. Однако преподает он в гимназии не предметы естественнонаучного цикла, а классическую литературу, древние языки и математику. Нужен диплом. Это позволит преподавать ботанику и физику, минералогию и естественную историю. К диплому было 2 пути. Один - окончить университет, другой путь - более краткий - сдать в Вене перед специальной комиссией императорского министерства культов и просвещения экзамены на право преподавать такие-то предметы в таких-то классах.

Законы Менделя

Цитологические основы законов Менделя базируются на:

Парности хромосом (парности генов, обусловливающих возможность развития какого-либо признака) особенностях мейоза (процессах, происходящих в мейозе, которые обеспечивают независимое расхождение хромосом с находящимися на них генами к разным плюсам клетки, а затем и в разные гаметы)

Особенностях процесса оплодотворения (случайного комбинирования хромосом, несущих по одному гену из каждой аллельной пары)

Научный метод Менделя

Основные закономерности передачи наследственных признаков от родителей к потомкам были установлены Г. Менделем во второй половинеXIX в. Он скрещивал растения гороха, различающиеся по отдельным признакам, и на основе полученных результатов обосновал идею о существовании наследственных задатков, ответственных за проявление признаков. В своих работах Мендель применил метод гибридологического анализа, ставший универсальным в изучении закономерностей наследования признаков у растений, животных и человека. В отличие от своих предшественников, пытавшихся проследить наследование многих признаков организма в совокупности, Мендель исследовал это сложное явление аналитически. Он наблюдал наследование всего лишь одной пары или небольшого числа альтернативных (взаимоисключающих) пар признаков у сортов садового гороха, а именно: белые и красные цветки; низкий и высокий рост; желтые и зеленые, гладкие и морщинистые семена гороха и т. п. Такие контрастные признаки называются аллелями, а термин “аллель” и “ген” употребляют как синонимы. Для скрещиваний Мендель использовал чистые линии, т. е. потомство одного самоопыляющегося растения, в котором сохраняется сходная совокупность генов. Каждая из этих линий не давала расщепления признаков. Существенным в методике гибридологического анализа было и то, что Мендель впервые точно подсчитал число потомков - гибридов с разными признаками, т. е. математически обработал полученные результаты и ввел для записи различных вариантов скрещивания принятую в математике символику: А, В , С, D и т. д. Этими буквами он обозначал соответствующие наследственные факторы. В современной генетике приняты следующие условные обозначения при скрещивании: родительские формы - Р; полученные от скрещивания гибриды первого поколения - F1 ; гибриды второго поколения - F2, третьего - F3 и т. д. Само скрещивание двух особей обозначают знаком х (например: АА х aа). Из множества разнообразных признаков скрещиваемых растений гороха в первом опыте Мендель учитывал наследование лишь одной пары: желтые и зеленые семена, красные и белые цветки и т. д. Такое скрещивание называется моногибридным. Если прослеживают наследование двух пар признаков, например желтые гладкие семена гороха одного сорта и зеленые морщинистые другого, то скрещивание называют дигибридным. Если же учитывают три и большее число пар признаков, скрещивание называют полигибридным.

Закономерности наследования признаков

Аллели - обозначают буквами латинского алфавита, при этом одни признаки Мендель назвал доминирующими (преобладающими) и обозначил их заглавными буквами - А, В, С и т. д., другие - рецессивными (уступающими, подавляемыми), которые обозначил строчными буквами - а, в, с и т. д. Поскольку каждая хромосома (носитель аллелей или генов) содержит лишь одну из двух аллелей, а гомологичные хромосомы всегда парные (одна отцовская, другая материнская), в диплоидных клетках всегда есть пара аллелей: АА, аа, Аа, ВВ, bb. Bb и т. д. Особи и их клетки, имеющие в своих гомологичных хромосомах пару одинаковых аллелей (АА или аа), называются гомозиготными. Они могут образовывать только один тип половых клеток: либо гаметы с аллелью А, либо гаметы с аллелью а. Особи, у которых в гомологичных хромосомах их клеток имеются и доминантный, и рецессивный гены Аа, называются гетерозиготными; при созревании половых клеток они образуют гаметы двух типов: гаметы с аллелем А и гаметы с аллелем а. У гетерозиготных организмов доминантная аллель А, проявляющаяся фенотипически, находится в одной хромосоме, а рецессивная аллель а, подавляемая доминантом, - в соответствующем участке (локусе) другой гомологичной хромосомы. В случае гомозиготности каждая из пары аллелей отражает либо доминантное (АА), либо рецессивное (аа) состояние генов, которые в обоих случаях проявят свое действие. Понятие о доминантных и рецессивных наследственных факторах, впервые примененное Менделем, прочно утвердилось в современной генетике. Позже были введены понятия генотип и фенотип. Генотип - совокупность всех генов, которые имеются у данного организма. Фенотип - совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития выданных условиях. Понятие фенотип распространяется на любые признаки организма: особенности внешнего строения, физиологических процессов, поведения и т. д. Фенотипическое проявление признаков всегда реализуется на основе взаимодействия генотипа с комплексом факторов внутренней и внешней среды.

Три закона Менделя

Г. Мендель сформулировал на основе анализа результатов моногибридного скрещивания и назвал их правилами (позже они стали называться законами). Как оказалось, при скрещивании растений двух чистых линий гороха с желтыми и зелеными семенами в первом поколении (F1) все гибридные семена имели желтый цвет. Следовательно, признак желтой окраски семян был доминирующим. В буквенном выражении это записывается так: Р АА х аа; все гаметы одного родителя А, А, другого - а, а, возможное сочетание этих гамет в зиготах равно четырем: Аа, Аа, Аа, Аа, т. е. у всех гибридов F1 наблюдается полное преобладание одного признака над другим - все семена при этом желтого цвета. Аналогичные результаты получены Менделем и при анализе наследования других шести пар изученных признаков. Исходя из этого, Мендель сформулировал правило доминирования, или первый закон: при моногибридном скрещивании все потомство в первом поколении характеризуется единообразием по фенотипу и генотипу - цвет семян желтый, сочетание аллелей у всех гибридов Аа. Эта закономерность подтверждается и для тех случаев, когда нет полного доминирования: например, при скрещивании растенияночной красавицы, имеющего красные цветки (АА), с растением, имеющим белые цветки (аа), у всех гибридов fi (Аа) цветки оказываются не красными, а розовыми - их окраска имеет промежуточный цвет, но единообразие полностью сохраняется. После работ Менделя промежуточный характер наследования у гибридов F1 был выявлен не только у растений, но и у животных, поэтому закон доминирования-первый закон Менделя-принято называть также законом единообразия гибридов первого поколения . Из семян, полученных от гибридов F1, Мендель выращивал растения, которые либо скрещивал между собой, либо давал им возможность самоопыляться. Среди потомков F2, выявилось расщепление: во втором поколении оказались как желтые, так и зеленые семена. Всего Мендель получил в своих опытах 6022 желтых и 2001 зеленых семян, их численное соотношение примерно 3:1. Такие же численные соотношения были получены и по другим шести парам изученных Менделем признаков растений гороха. В итоге второй закон Менделя формулируется так: при скрещивании гибридов первого поколения их потомство дает расщепление в соотношении 3:1 при полном доминировании и в соотношении 1:2:1 при промежуточном наследовании (неполное доминирование) . Схема этого, опыта в буквенном выражении выглядит так: Р Аа х Аа, их гаметы А и я, возможное сочетание гамет равно четырем: АА, 2Аа, аа, т. е. 75% всех семян в F2 имея один или два доминантных аллеля, обладали желтой окраской и 25 % - зеленой. Факт появления в рецессивных признаков (оба аллеля у них рецессивны-аа ) свидетельствует о том, что эти признаки, так же как контролирующие их гены, не исчезают, не смешиваются с доминантными признаками в гибридном организма, их активность подавлена действием доминантных генов. Если же в организме присутствуют оба рецессивных по данному признаку гена, то их действие не подавляется, и они проявляют себя в фенотипе. Генотип гибридов в F2 имеет соотношение 1:2:1. При последующих скрещиваниях потомство F2 ведет себя по-разному: 1) из 75% растений с доминантными признаками (с генотипами АА и Аа) 50% гетерозиготны (Аа) и поэтому в Fз они дадут расщепление 3:1, 2) 25% растений гомозиготны по доминантному признаку (АА) и при самоопылении в Fз не дают расщепления; 3) 25% семян гомозиготны по рецессивному признаку (аа), имеют зеленую окраску и при самоопылении в F3 не дают расщепления признаков.

Для объяснения существа явлений единообразия гибридов первого поколения и расщепления признаков у гибридов второго поколения Мендель выдвинул гипотезу чистоты гамет: всякий гетерозиготный гибрид (Аа, Bb и т. д.) формирует “чистые” гаметы, несущие только одну аллель: либо А, либо а , что впоследствии полностью подтвердилось и в цитологических исследованиях. Как известно, при созревании половых клеток у гетерозигот гомологичные хромосомы окажутся в разных гаметах и, следовательно, в гаметах будет по одному гену из каждой пары. Анализирующее скрещивание используется для выяснения гетерозиготности гибрида по той или иной паре признаков. При этом гибрид первого поколения скрещивается с родителем, гомозиготным по рецессивному гену (аа). Такое скрещивание необходимо потому, что в большинстве случаев гомозиготные особи (АА) фенотипически не отличаются от гетерозиготных (Аа) (семена гороха от АА и Аа имеют желтый цвет). Между тем в практике выведения новых пород животных и сортов растений гетерозиготные особи в качестве исходных не годятся, так как при скрещивании их потомство даст расщепление. Необходимы только гомозиготные особи. Схему анализирующего скрещивания в буквенном выражении можно показать двумя вариантами:

    гибридная особь гетерозиготная (Аа), фенотипически неотличимая от гомозиготной, скрещивается с гомозиготной рецессивной особью (аа ): Р Аа х аа: их гаметы - А, а и а,а, распределение в F1: Аа, Аа, аа, аа, т. е. в потомстве наблюдается расщепление 2:2 или 1:1, подтверждающее гетерозиготность испытуемой особи; 2) гибридная особь гомозиготна по доминантным признакам (АА): Р АА х аа ; их гаметы А A и а, а; в потомстве F1 расщепления не происходит Цель дигибридного скрещивания - проследить наследование двух пар признаков одновременно. При этом скрещивании Мендель установил еще одну важную закономерность: независимое расхождение аллелей и свободное, или независимое, их комбинирование, впоследствии названное третьим законом Менделя . Исходным материалом были сорта гороха с желтыми гладкими семенами (ААВВ) и зелеными морщинистыми (аавв); первые доминантные, вторые рецессивные. Гибридные растения из f1 сохраняли единообразие: имели желтые гладкие семена, были гетерозиготными, их генотип - АаВв. Каждое из этих растений в мейозе образует гаметы четырех типов: АВ, Ав, аВ, аа. Для определения сочетаний этих типов гамет и учета результатов расщепления теперь пользуются решеткой Пеннета. При этом генотипы гамет одного родителя располагают над решеткой по горизонтали, а генотипы гамет другого родителя - у левого края решетки по вертикали (рис. 20). Четыре сочетания того и другого типа гамет в F2 могут дать 16 вариантов зигот, анализ которых подтверждает случайное комбинирование генотипов каждой из гамет того и другого родителя, дающее расщепление признаков по фенотипу в соотношении 9:3:3:1. Важно подчеркнуть, что при этом выявились не только признаки родительских форм, но и новые комбинации: желтые морщинистые (ААвв) и зеленые гладкие {aaBB). Желтые гладкие семена гороха фенотипически подобны потомкам первого поколения от дигибридного скрещивания, но их генотип может иметь различные варианты: ААВВ, АаВВ, ААВв, АаВв; новыми сочетаниями генотипов оказались фенотипически зеленые гладкие - ааВВ, ааВв и фенотипически желтые морщинистые - ААвв, Аавв; фенотипически зеленые морщинистые имеют единственный генотип аавв. В этом скрещивании форма семян наследуется независимо от их окраски. Рассмотренные 16 вариантов сочетаний аллелей в зиготах иллюстрируют комбинативную изменчивость и независимое, расщепление пар аллелей, т. е. (3:1)2. Независимое комбинирование генов и основанное на нем расщепление в F2 в соотношении. 9:3:3:1 в дальнейшем было подтверждено для большого числа животных и растений, но при соблюдении двух условий:

1) доминирование должно быть полным (при неполном доминировании и других формах взаимодействия генов числовые соотношения имеют иное выражение); 2) независимое расщепление приложимо для генов, локализованных в разных хромосомах. Третий закон Менделя можно сформулировать так: члены одной пары аллелей отделяются в мейозе независимо от членов других пар, комбинируясь в гаметах случай, но во всех возможных сочетаниях (при моногибридном скрещивании таких сочетаний было 4, при дагибрид-ном - 16, при тригибридном скрещивании гетерозиготы образуют по 8 типов гамет, для которых возможны 64 сочетания, и т. д.).

Подобные документы:

Выступление: Мендель Грегор Иоганн Австрийский священник и ботаник Грегор Иоганн Мендель заложил основы такой науки, как генетика. Он математически вывел законы генетики, которые называются сейчас его именем. Иоганн Мендель родился в 1822 году в Австрии. Ещё в детстве он начал проявлять интерес к изучению растений и окружающей среды. После двух лет учебы в Институте Философии в Ольмютце Мендель решил уйти в монастырь в Брюнне.

Реферат Генетика и человек Люди интересуются генетикой давно, правда, не всегда они называли вопросы наследования определенных признаков генетикой.

Реферат Расово-антропологическая школа Антропология как самостоятельная дисциплина начала развиваться во второй половине 18- го века. Ранние попыт­ки понять место человека в природе, его сходство с другими организмами, его своеобразие, являются, по-видимому, столь же древними, как само научное знание вообще. Основные этапы фор­мирования антропологических знаний, совпадают с переломными этапами истории человеческого общества.

Реферат Будущее человечества и прогресс генетики Генетика представляет собой одну из основных, наиболее увлекательных и вместе с тем сложных дисциплин современного естествознания. Место генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость.

Реферат Достижение современного естествознания в биологии Идея эволюции живой природы возникла в Новое время как противопоставление креационизму (от лат. "созидание") - учению о сотворении мира богом из ничего и неизменности созданного творцом мира. Креацианизм как мировоззрение сложился в эпоху поздней античности и в Средневековье и занял господствующие позиции в культуре.

Реферат Грегор Мендель (1822-1884) Мендель (Mendel) Грегор Иоганн (22.07.1822, Хейнцендорф – 06.01.1884, Брюнне), австрийский биолог, основоположник генетики. Учился в школах Хейнцендорфа и Липника, затем в окружной гимназии в Троппау. В 1843 окончил философские классы при университете в Ольмюце и постригся в монахи Августинского монастыря св. Фомы в Брюнне (ныне Брно, Чехия).

Реферат Грегор Иоганн Мендель Грегор Иоганн Мендель родился в 1822 году в Хейнцендорфе в Силезии, где его отец был владельцем небольшого крестьянского надела. После получения начального образования в тамошней деревенской школе и позже по окончании коллегии пиаристов в Лейпнике он был в 1834 году принял в Троппаунскую императорско-королевскую гимназию в первый грамматический класс.

Реферат Введение в мед.генетику I. Основные понятия. Генетика изучает вопросы наследственности и изменчивости. Медицинская генетика изучает роль наследственности в патологии человека. 1. Первый шаг в изучении наследственности был сделан Грегором Менделем. Он заложил основу для понимания основных положений генетики, в том числе генетики человека. Гипотезы Менделя можно обобщить в виде трех основных законов. а.

Реферат Мировоззренческие и социально-этические проблемы генетики человека TOC \o "1-3" \h \z \u ВВЕДЕНИЕ................................................................................................... PAGEREF _Toc164087062 \h 3 1 КРАТКАЯ ИСТОРИЯ ГЕНЕТИКИ....................................................... PAGEREF _Toc

Мендель был монахом и с огромным удовольствием проводил занятия по математике и физике в школе, находившейся неподалеку. Но ему не удалось пройти государственную аттестацию на должность учителя. видел его тягу к знаниям и очень высокие способности интеллекта. Он послал его в Венский университет для получений высшего образования. Там Грегор Мендель проучился два года. Он посещал занятия по естественным наукам, математике. Это помогло ему в дальнейшем сформулировать законы наследования.

Сложные учебные годы

Грегор Мендель был вторым ребенком в семье крестьян, имеющих немецкие и славянские корни. В 1840 году мальчик окончил шесть классов обучения в гимназии, а уже на следующий год поступил в философский класс. Но в те годы финансовое состояние семьи ухудшилось, и 16-летний Мендель должен был самостоятельно заботиться о собственном пропитании. Это было очень трудно. Поэтому по окончании обучения в философских классах он стал послушником в монастыре.

Кстати, имя, данное ему при рождении, - Иоганн. Уже в монастыре его стали именовать Грегором. Поступил он сюда не зря, так как получил покровительство, а также финансовую поддержку, дающую возможность продолжать обучение. В 1847-м его посвятили в сан священника. В этот период он обучался в теологической школе. Здесь имелась богатая библиотека, что оказывало положительное влияние на обучение.

Монах и преподаватель

Грегор, который еще не знал, что он - будущий основоположник генетики, вел занятия в школе и после провала аттестации попал в университет. После его окончания Мендель вернулся в город Брюнн и продолжил преподавать природоведение и физику. Он вновь попытался пройти аттестацию на должность педагога, но вторая попытка тоже оказалась провальной.

Опыты с горохом

Почему Менделя считают основоположником генетики? С 1856 года он в монастырском саду начал проводить обширные и тщательно продуманные опыты, связанные со скрещиванием растений. На примере гороха он выявлял закономерности наследования различных признаков в потомстве гибридных растений. Спустя семь лет эксперименты были закончены. А еще через пару лет, в 1865 году, на заседаниях общества естествоиспытателей Брюнна он выступил с докладом о проделанной работе. Через год вышла его статья об опытах над растительными гибридами. Именно благодаря ей были заложены как самостоятельной научной дисциплины. Благодаря этому, Мендель - основоположник генетики.

Если раньше ученые не могли все собрать воедино и сформировать принципы, то Грегору это удалось. Им были созданы научные правила исследования и описания гибридов, а также их потомков. Была разработана и применена символьная система для обозначения признаков. Менделем были сформулированы два принципа, благодаря которым можно делать предсказания о наследовании.

Позднее признание

Несмотря на публикацию его статьи, работа имела только один положительный отзыв. Благосклонно отнесся к трудам Менделя немецкий ученый Негели, который тоже изучал гибридизацию. Но и у него были сомнения насчет того, что законы, которые выявлены лишь на горохе, могут иметь всеобщий характер. Он посоветовал, чтобы Мендель, основоположник генетики, повторил опыты и на других видах растений. Грегор с этим почтительно согласился.

Он попытался повторить опыты на ястребинке, но результаты были неудачными. И только спустя много лет стало понятно, почему так произошло. Дело было в том, что у этого растения семена образуются без полового размножения. Также были и другие исключения из тех принципов, которые вывел основоположник генетики. После публикации статей известных ботаников, которые подтвердили исследования Менделя, начиная с 1900 года, произошло признание его работ. По этой причине именно 1900 год считается годом рождения этой науки.

Все, что открыл Мендель, убеждало его в том, что законы, описанные им при помощи гороха, имеют всеобщий характер. Нужно было только убедить в этом других ученых. Но задача являлась такой же трудной, как и само научное открытие. А все потому, что знание фактов и их понимание - это совершенно разные вещи. Судьба открытия генетика, то есть 35-летняя задержка между самим открытием и его общественным признанием, - это совсем не парадокс. В науке это вполне нормально. Спустя век после Менделя, когда генетика уже расцветала, такая же участь постигла и открытия Мак-Клинток, которые не признавались 25 лет.

Наследие

В 1868 году ученый, основоположник генетики Мендель, стал настоятелем в монастыре. Он почти полностью перестал заниматься наукой. В его архивах были найдены заметки по лингвистике, разведению пчел, а также метеорологии. На месте этого монастыря в настоящее время находится музей имени Грегора Менделя. Также в его честь назван специальный научный журнал.

Loading...Loading...