Современным зданиям – современные технологии водоснабжения! Современные методы очистки воды Новые и современные технологии водоподготовки

Чистая питьевая вода - залог здоровья, и многие владельцы домов, обустроившие на участке автономный источник водоснабжения, считают, что обеспечили себя чистой и качественной водой. Но и вода из центральных водопроводов, и вода из первичных подземных источников обязательно требует очистки, так как под землёй в неё попадает множество примесей, с которыми не способны справиться обычные фильтры. Для решения этих проблем предназначены системы водоподготовки.

Выбери свой Ecomaster!

Водоподготовкой называется многоступенчатый процесс очищения природной воды, полученной из первичного природного источника, которая используется на предприятиях и в бытовых системах, для того, чтобы привести её качество в соответствие с санитарными нормами (СанПиН 2.1.4.1074-01).

Зачем нужна система водоподготовки

Вода – один из лучших естественных растворителей. Нитраты, органические вещества и минералы, вирусы и бактерии, высокое содержание металлов – это малая часть того, что попадает к потребителям из источников водоснабжения, не оснащённых системой водоподготовки.

Простые фильтрационные системы не способны справиться с такими специфическими видами загрязнений. Водоподготовка очищает воду от грубодисперсных и коллоидных примесей и солей. Это гарантия того, что поступающая к потребителям вода безопасна для здоровья. Помимо этого, система водоочистки решает другие проблемы, источником которых является некачественная вода:

  • быстрое засорение труб;
  • коррозия металлических элементов водопроводной системы;
  • образование накипи;
  • быстрый износ сантехники и бытового оборудования, контактирующего с водой (бойлеры, стиральные и посудомоечные машины и пр.);

Исходя из описанных проблем, всем владельцам частных домов, рекомендуется провести химический и бактериологический анализ воды, которая поступает из колодцев или скважин. По итогам экспертизы можно будет подобрать оптимальную по всем параметрам систему водоочистки.

Элементы водоподготовки

Современные системы водоподготовки – это комплекс фильтров, выполняющих разные функции. Если результаты экспертизы указывают на то, что для воды из конкретного источника характерен один вид загрязнения можно использовать один фильтр. Но, как правило, вода содержит множество примесей разной природы и фильтры используют в комплексе.

В системах водоочистки используются следующие виды фильтров:

    Фильтры грубой (механической) очистки – отвечают за первичное очищение воды. Они обеспечивают удаление крупных нерастворенных включений (сор, песок, ржавчина, окалина, различные крупно- и мелкодисперсные взвеси).

    Фильтры осветлители позволяют получать прозрачную бесцветную воду. При высокой концентрации органических веществ и минералов вода становиться мутной, а бурый цвет указывает на то, что в ней содержатся ионы железа. В осветляющих фильтрах все эти примеси удаляются, проходя через слой песка, антрацита или активированного угля.

    Умягчители используются для удаления из воды растворимых солей кальция и магния. Жёсткая вода вредна для организма и имеет неприятный вкус. Кроме того, при нагревании и испарении воды с высоким содержанием таких солей на внутренних поверхностях труб и бытовой техники остаётся твердый осадок, который приводит к их быстрому износу.

    Очистка от солей кальция в умягчителях осуществляется путем фильтрования воды при помощи ионообменных смол. При контакте с водой такие смолы поглощают ионы кальция и магния, заменяя их ионами натрия, тем самым смягчая её.

    Аэрационные колонны устанавливают для того, чтобы удалять из воды железо и сероводород. Также они насыщают воду кислородом, что способствует формированию благоприятной среды для реакций окисления.

    Фильтры для тонкой очистки позволяют удалить из воды мельчайшие твердые включения, которые пропустила система осветления. Вода в них очищается, проходя через картриджи, наполненные активированным углем и разными мелкопористыми материалами.

    Антибиотические фильтры выполняют функцию обеззараживания. Они справляются с бактериями, вирусами и пр. Свои задачи бактерицидные фильтры выполняют благодаря ультрафиолетовому излучению, специальные стерилизующие УФ-лампы разрушают генетический аппарат микроорганизмов и не дают им размножаться. Это безреагентные устройства, применение которых абсолютно безопасно для здоровья и никак не влияет на качество воды, в отличие от обеззараживания хлором.

    Фильтры с обратноосмотической мембраной выполняют функцию тонкой очистки питьевой воды. Они очищают её практически от всех ионов, которые входят в состав солей, тяжелых металлов, фтора, пестицидов, нефтепродуктов, и др.

Очистка в системах водоподготовки, которые включают в себя полный комплекс фильтров всегда проходит в последовательности описанной выше. Но количество этапов зависит от типа загрязнений, иногда, некоторые из них пропускают, если результаты экспертизы указывают на то, что в них нет необходимости.

Экодар: эффективные системы водоподготовки

С 1993 года компания Экодар работает в сфере проектирования, производства и продажи систем водоподготовки. За годы работы нам удалось заслужить репутацию компании, которой можно доверить разработку и реализацию проектов любой сложности.

Сегодня Экодар – это динамично развивающееся предприятие полного цикла, а накопленный опыт позволяет нам предоставлять полный комплекс услуг, связанных с улучшением качества воды:

  • экспертные консультации по выбору, установке и использованию систем водоочистки и водоподготовки;
  • продажа качественного оборудования и комплектующих для систем водоподготовки под собственными торговыми марками ZauberROS и Ecomaster, а также продукции ведущих зарубежных производителей;
  • анализ питьевой, природной и сточной воды на базе собственной аккредитованной лаборатории;
  • проектирование систем водоснабжения, водоочистки и водоподготовки;
  • установка и пусконаладка систем водоочистки;
  • гарантийное, сервисное и постгарантийное обслуживание.

Компания осуществляет свою деятельность на основании Свидетельства СРО о допуске к выполнению проектных и строительных работ. Высокое качество услуг мы обеспечиваем благодаря интегрированной системе менеджмента качества. Своим клиентам мы предлагаем:

  • большой ассортимент оборудования и комплектующих;
  • гарантии качества на все представленные в каталоге категории товаров;
  • широкий ценовой диапазон;
  • оперативная доставка заказов и выезд мастеров;
  • постоянное наличие продукции на складе;
  • информационная поддержка клиентов;
  • программы лояльности для постоянных и крупных заказчиков;
  • индивидуальный подход к каждому клиенту;
  • точное соблюдение сроков поставок и выполнения работ;
  • только сертифицированные специалисты.

Миссия нашей компании – обеспечение потребителей качественной водой и внедрение самых передовых технологий в сфере водоочистки. Мы предлагаем эффективные решения в сфере промышленной и бытовой водоподготовки для частных и корпоративных клиентов. Наши специалисты подберут надежное и высокопроизводительное оборудование для любых объектов − от бытовых фильтров для квартир и загородных домов до многофункциональных систем для промышленных объектов.

Выбор и установка оборудования водоочистки

Существует множество факторов, которые нужно учитывать при выборе системы водоподготовки, поэтому проектирование и выбор оборудования лучше доверить профессиональным компаниям, имеющим необходимые разрешения на данный вид деятельности. При выборе таких систем определяющими являются такие факторы:

  • результаты лабораторных анализов состава воды;
  • объем и режим водопотребления;
  • особенности системы водоснабжения на объекте;
  • бюджет на реализацию проекта.

В зависимости от выявленных в ходе лабораторного анализа отклонений от санитарных норм, особенностей водопотребления конкретного объекта, составляются схемы водоподготовки: состав необходимого оборудования, тип и последовательность установки модулей, фильтров и так далее.

Монтаж системы водоподготовки - это технологически сложный процесс, которым должны заниматься специалисты. Если к объекту подведены 2 магистрали, то для каждой из них устанавливается разный набор оборудования.

Для частных домов в большинстве случаев оптимальным решением является установка всего комплекса фильтров, описанных выше. Это позволит не только получить гарантированно качественную и безопасную питьевую воду, но и отсрочит износ бытовой техники, сантехнического оборудования и системы отопления.

Специалисты компании Экодар помогут подобрать подходящее по характеристикам и цене оборудование для систем водоочистки. Чтобы получить профессиональную консультацию – звоните нам по телефону, указанному или оставляйте вопросы на сайте.

1

Настоящая статья посвящена обзору современных технологий очистки природных вод от антропогенных загрязнений, базирующихся на методах сорбции и биологического окисления. В статье рассмотрены основные пути попадания загрязнений в поверхностные водоисточники, представлены данные по составу вод в реках промышленно развитых регионов России. Существующие на действующих очистных сооружениях технологии не снижают концентрации антропогенных загрязнений в природных водах, что приводит к необходимости применения сорбционных методов очистки воды. Применение сорбционных методов очистки ограничено сорбционной емкостью сорбентов, по исчерпании которой необходима регенерация или замена сорбционного материала. Совмещение в биосорберах процессов сорбции и биологического окисления задержанных загрязнений позволяет поддерживать сорбционную емкость сорбентов на постоянном уровне. Дальнейшее развитие биосорбционной технологии связано с процессами мембранного разделения, позволяющими исключить вынос из биореактора частиц сорбента с закрепленной на них биомассой, что увеличивает эффект очистки и снижает ее стоимость.

биосорбционно-мембранная технология

очистка природных вод

питьевая вода

порошкообразный активированный уголь

хлорорганические соединения

1. Алексеева Л.П. Снижение концентрации хлорорганических соединений, образующихся в процессе подготовки питьевой воды // Водоснабжение и санитарная техника. – 2009. – № 9. – C. 27–34.

2. Андрианов А., Первов А. Методика определения параметров эксплуатации ультрафильтрационных систем очистки природных вод // Водоочистка. – 2005. – № 7. – C. 22–35.

3. Герасимов Г.Н. Мембранный биологический реактор BRM (опыт обработки промышленных и городских сточных вод) // Водоснабжение и санитарная техника. – 2004. – №4, часть 1.

4. Драгинский В.Л., Алексеева Л.П., Гетманцев С.В. Коагуляция в технологии очистки природных вод. – М., 2005. – 576 с.

5. Журба М.Г., Мякишев В.А. Очистка поверхностных вод, подвергшихся антропогенному воздействию // Водоснабжение и санитарная техника. – 1992. – № 8. – C. 2–6.

6. Журба М.Г., Соколов Л.И., Говорова Ж.М. Водоснабжение. Проектирование систем и сооружений: издание второе, переработанное и дополненное: учебное пособие. – М.: Изд-во АСВ, 2004. с. 496.

7. Линевич С.Н., Гетманцев С.В. Коагуляционный метод водообработки: теоретические основы и практическое использование. – М.: Наука, 2007. – С. 230.

8. Смолин С.К., Клименко Н.А., Невинная Л.В. Биорегенерация активных углей после адсорбции ПАВ в динамических условиях // Химия и технология воды. – 2001. – Т. 23, № 4.

9. Смирнова И.И. Исследование процесса очистки природных вод биосорбционно-мембранным методом: дис. ... канд. тех. наук: 05.23.04. – М., 2009. – 113 с.

10. Швецов В.Н. Очистка природных вод биосорбционно-мембранным методом / В.Н. Швецов и др. // Водоснабжение и сан. техника. – 2007. – № 11. – С. 24–28.

11. Швецов В.Н. Развитие биомембранных технологий очистки природных вод / В.Н. Швецов, К.М. Морозова, И.И. Смирнова // Водоснабжение и сан. техника. – 2009. – № 9. – С. 64–70.

12. Introduction to membranes – MBRs: Manufacturers` comparison: part 2. – supplier review // Filtration+Separation Elsevier Ltd., March 2008. – Р. 28–31.

13. Introduction to membranes – MBRs: Manufacturers` comparison: part 1 // Filtration+Separation Elsevier Ltd., April 2008. – Р. 30–32.

14. Kang I.-J., Lee Ch.-H., Kim K.-J. Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system // Water Research 37. – 2003. – Р. 1192–1197.

15. Lebeau T., Lelievre C. и др. Immersed membrane filtration for the production of drinking water-combination with PAC for NOM and SOCs removal // Desalimation. – 1998. – № 17 – Р. 219–231.

16. Clever M., Jordt F., Knauf R., Rabiger N., Rudebusch M., Hilker-Scheibel R. Process water production from river water by ultrafiltration and reverse osmosis // Desalination. – 2000. – № 131. – Р. 325–336.

17. Sawada Shigeki Устройство для получения сверхчистой воды, пат. JP 3387311 B2, МПК C02F 1/44, с приоритетом от 22.04.1996, опубл. 17.03.2005.

18. Soe G.T., Ohgaki S., Suzuki Y. Biological powdered activated carbon (BPAC)- microfiltration (MF) for wastewater reclamation and reuse. Murdoch Univ.Perth, Australia: The Proc. of International Specialist Conference on “Desalination and Water reuse”. – 1994. – Р. 70–79.

19. Soe G.T., Ohgaki S., Suzuki Y. Sorption characteristics of biological powdered activated carbon in BPAC-MF (Biological Powdered Activated Carbon – Microfiltration) system for refractory Organic Removal // Wat. Sci. Tech. – 1997. – № 35(7) – Р. 163–170.

20. Stephenson Т., Judd S., Jefferson B., Brindle K. Membrane Bioreactors for Wastewater Treatment. IWA Publishing. – London: U.K., 2000.

21. Thiruvenkatachari R., Shim W.G., Lee J.W., Moon H. Effect of powdered activated carbon type on the performance of an adsorption-microfiltratin submerged hollow fiber membrane hybrid system // Korean J. Chem. Eng. – 2004. – № 21 (5). – Р. 1044–1052.

22. Visvanathan C., Ben Aim R., Parameshwaran K. Membrane separation bioreactors for wastewater treatment // Crit. Rev. Environ. Sci Technol. – 2000. – № 30(1). – Р. 1–48.

В России для организации водоснабжения преимущественно используются поверхностные водоисточники, на долю которых приходится до 70 % от общего водозабора.

Основными источниками поступления загрязняющих веществ в поверхностные воды являются: бытовые, промышленные и сельскохозяйственные сточные воды. Их воздействие выражается в повышении концентраций в поверхностных водах биогенных элементов, органических соединений, поверхностно-активных веществ (СПАВ), нефтепродуктов, фенолов и др.

Загрязнение природных водоемов различного рода примесями происходит и при контакте их с окружающей атмосферой. Так, многочисленные газообразные выбросы промышленных производств, содержащие азот, оксид углерода, диоксид серы и мельчайшие частицы производственных отходов, вместе с вентиляционными выбросами попадают в атмосферный воздух, после контакта с которым происходит загрязнение поверхностных водоисточников, вода которых насыщается дополнительными дисперсными, коллоидными и молекулярно-растворенными примесями антропогенного происхождения.

В таблице представлены данные по некоторым водоисточникам, имеющим повышенные концентрации загрязняющих веществ природного и антропогенного характера. Приведенные данные позволяют дать предварительную оценку воздействия антропогенных факторов на природные водоисточники .

Показатели

Мутность, мг/л

Цветность, град

Нефтепродукты, мг/л

Фенолы, мг/л

СПАВ, мг/л

Волга (Балахна)

Ока (Тула)

Клязьма (Владимир)

Которосль (Ярославль)

Дон (Таганрог)

Томь (Кемерово)

СанПин 2.1.4.1074-01

Примечание. * норматив ПДК для водоема рыбохозяйственного назначения.

В России технологии подготовки питьевой воды основаны на классических методах коагуляции, отстаивании, фильтрации и сорбции. Обеззараживание воды осуществляется с применением гипохлорита натрия и газообразного хлора. Из-за постоянно возрастающей степени загрязнения водоисточников традиционно применяемые технологии обработки воды стали в большинстве случаев недостаточно эффективными .

Очистка воды коагулированием и флокулированием загрязнений представляет собой сложный физико-химический процесс, на эффективность протекания которого оказывают влияние многочисленные факторы (взвешенные вещества, ионный состав, щелочность, количество растворенных органических соединений, температура и др.). В паводковый период холодная вода, высокие цветность и мутность, низкая щелочность требуют высоких доз коагулянта или применения флокулянтов для интенсификации процессов осаждения загрязнений. Ухудшение процесса коагуляции также наблюдается при коагулировании маломутных цветных вод в холодное время года.

Вместе с тем классические технологии водоочистки практически не удаляют из воды химические загрязнения, находящиеся в растворенном виде, такие как фенолы, СПАВ, растворенные фракции нефти, ионы тяжелых металлов и др. Вследствие чего действующие очистные сооружения не могут обеспечить надлежащей барьерной функции.

Традиционные технологии очистки воды недостаточно эффективны в отношении ряда антропогенных загрязнений. Так, например, при исходной концентрации нефтепродуктов 1-5 мг/л эффект очистки составляет 20-40 %; анионактивные ПАВ удаляются на 25-50 % при содержании их в исходной воде 1,5-2,5 мг/л; фенолы на традиционных сооружениях при начальной концентрации 0,05-0,2 мг/л практически не удаляются, эффект очистки редко превышает 5 % .

Во многих случаях на традиционных очистных сооружениях в процессе первичного хлорирования воды образуются хлорорганические соединения. Обусловлено это возрастанием антропогенных нагрузок на источники водоснабжения, а также изменением технологических режимов водоочистки, в частности применением повышенных доз хлора и коагулянта и увеличением времени контакта хлора с водой. Наиболее часто в хлорированной воде обнаруживаются в концентрациях, превышающих ПДК, четыреххлористый углерод, хлороформ и бромоформы, обладающие канцерогенностью и мутагенностью. Обеспечить их нормативные концентрации после всего цикла водообработки на традиционных сооружениях не всегда удается .

Повышение качества очищенной воды на водопроводных очистных сооружениях в настоящий момент осуществляется путем применения дополнительных методов доочистки воды: озонирования, сорбции, ионного обмена, обратного осмоса и др. Как правило, все эти методы требуют значительных капиталовложений на оборудование, электроэнергию, транспортные перевозки и реагенты.

Одним из распространенных в практике повышения качества водоочистки адсорбентом является активированный уголь.

Пористые сорбенты на основе активированных углей широко применяются в промышленности и являются эффективными поглотителями паров, газов, растворенных веществ, а также катализаторами или носителями катализаторов. Благодаря своим свойствам они обеспечивают эффективную сорбцию макромолекул (в т.ч. углеводородов, красителей, белков, жиров и др.).

Активированные угли используются на конечной стадии водоподготовки для удаления различного рода хлорорганических соединений как содержащихся в исходной воде, так и образующихся в ней в больших количествах на предыдущих стадиях водоподготовки. Помимо этого, АУ поглощают из воды фенолы, пестициды, нефтепродукты, соединения тяжелых металлов и вещества, обуславливающие неприятные привкусы и запахи воды, тем самым повышая барьерную функцию водоочистных станций.

В технологии водоподготовки активированный уголь применяется в виде порошка (ПАУ) при углевании воды, дробленых или недробленых гранул (ГАУ) при фильтровании через угольные фильтры. Основными преимуществами ПАУ является хорошая кинетика сорбции, а значительная площадь внешней поверхности ПАУ обуславливает эффективную сорбцию макромолекул.

Выбор марки адсорбционного материала заключается в подборе параметров его пористой структуры в зависимости от размеров молекул адсорбируемых веществ. Так, для сорбции фенола, вещества с низкой молекулярной массой, имеющего размер молекул τ ≈ 0,63 нм, подходят такие активированные угли, как АГ-3 и МАУ-100, имеющие требуемую структуру пор. Нефтепродукты и СПАВ имеют более крупные размеры молекул τ ≥ 1,8 нм, при таких размерах молекулы может быть использован мезопористый сорбент СГН - 30.

Несмотря на то, что применение ПАУ повышает степень очистки природных вод, некоторые трудноокисляемые органические вещества не поддаются адсорбции на активном угле. В процессе адсорбционной очистки воды способность активных углей извлекать органические вещества снижается, а регенерация отработанного угля требует существенных эксплуатационных затрат, которые связаны с материало- и энергоемкостью технологии .

Одним из эффективных способов удаления антропогенных загрязнений из природных вод являются биологичекие методы очистки, в основу которых положены процессы аналогичные деструкции и превращению органических веществ в природных водотоках и водоемах.

Сущность биологической очистки заключается в минерализации органических загрязнений обрабатываемых вод, находящихся в виде тонко диспергированных нерастворенных и коллоидальных веществ, а также в растворенном состоянии при помощи аэробных биохимических процессов. В зависимости от условий, в которых происходит очистка воды, биологические методы разделяют на биологическую очистку в условиях близких к естественным и в искусственно созданных условиях.

Для биологической очистки воды в искусственных условиях в практике водоподготовки, в последнее время в основном применяют технологии, основанные на использовании естественного биоценоза и искусственных носителей прикрепленной микрофлоры с высокоразвитой удельной поверхностью. В качестве материалов-носителей могут применяться синтетические волокна, различные зернистые и гранулированные материалы, такие как песок, керамзит, стекло, пластмассы, цеолиты и активированные угли.

Использование иммобилизованных (прикрепленных) микроорганизмов позволяет применять биотехнологии для очистки природных вод не только от традиционных загрязнений, но и от широкого спектра токсичных трудноокисляемых веществ.

Данная технология реализуется главным образом в таких сооружениях, как биофильтры, угольные адсорберы с биологической активностью, реакторы с кипящим слоем и биосорберы.

Дальнейшим развитием сорбционных и биологических методов удаления загрязнений является технология биосорбции, которая начала развиваться с 70-х годов прошлого столетия. Процесс биосорбции включает биологическую деградацию органических загрязняющих веществ в дополнение к адсорбции их на активном угле. Это приводит к более длительному периоду работы угля (вплоть до восстановления сорбционной емкости) и, следовательно, к снижению стоимости очистки.

Увеличение сорбционной емкости угля объясняется его биологической регенерацией, т.е восстановлением адсорбционной способности за счет биоокисления органических соединений, адсорбированных на активном угле. Биологическое удаление адсорбата на поверхности угля позволяет повторно открыть адсорбционные центры, которые могут быть заняты другими органическими молекулами из раствора.

К середине 90-х гг. прошлого века в зарубежных изданиях появляется информация о совместном использовании биоактивного порошкообразного угля и микрофильтрации, которое показало высокую эффективность при удалении биологически стойких органических вещества из сточной воды .

К тому же периоду относятся работы сотрудников НИИ ВОДГЕО по оценке технологической эффективности биосорбционного метода удаления из воды р. Москва природных загрязнений и веществ антропогенного характера в моменты резкого увеличения концентрации загрязнений в паводковый период или при аварийных ситуациях.

Длительная эксплуатация биосорбционных установок с псевдоожиженным слоем гранулированного биологически активного угля параллельно с технологической схемой, включающей предварительное хлорирование, коагуляцию, отстаивание и фильтрование последовательно на песчаном фильтре и фильтре с активированным углем показала, что эффективность биосорберов сравнима с эффективностью работы всей схемы. В отношении загрязнений природного происхождения биосорбционные установки обеспечили получение воды того же качества, что и при использовании традиционной схемы водоподготовки с доочисткой на сорбционных фильтрах. При этом цветность снижалась с 20-25 до 11-15 град., мутность в среднем с 10 до 4 мг/л, окисляемость с 6-8 до 3,5-4,0, азот аммонийный с 0,3 до 0,03, коли-индекс на 70-75 %. Биосорберы оказались весьма эффективны в качестве «барьерных сооружений» для снижения концентраций различных веществ антропогенного характера. При этом они хорошо зарекомендовали себя как в условиях долговременного воздействия загрязнений, так и в условиях пиковых нагрузок, имитирующих возможные аварийные ситуации.

При искусственном введении характерных ингредиентов антропогенного происхождения в исходную воду (нафтален, бифенил, нефтепродукты, линдан, симазин, карбофос, фенол, 2-4-дихлорфенол, бензапирен) с концентрациями до 100 ПДК для каждого из загрязнений биосорберы обеспечили практически полное их удаление. Наблюдения подтвердили, что в биосорберах одновременно протекают три процесса - адсорбция загрязнений, их модификация в микропористой структуре сорбента в биоразлагаемую форму и биологическое окисление. Наличие дополнительной адсорбционной емкости активированного угля позволяет извлекать и аккумулировать в относительно короткие промежутки времени значительно большее количество загрязнений, чем может быть окислено биологическим путем. Эти загрязнения извлекаются сорбентом, а затем постепенно окисляются бактериями и их ферментами в микропористой структуре сорбента.

В последние годы все большее внимание уделяется вопросу применения мембранного фильтрования для очистки природных вод. Мембранная технология широко используется в зарубежной практике. В течение последних двадцати лет большое внимание исследователей уделялось разработке мембранных биореакторов для очистки сточных вод на базе ультра- и микрофильтрации как альтернативной технологии для улучшения и усовершенствования традиционных систем обработки природных и сточных вод с активным илом .

M. Clever, N. Rabiger, M. Rudebusch провели длительные исследования по изучению процесса очистки природных вод, основанной на мембранном фильтровании. Эксперимент проводился в промышленном масштабе на природной воде р. Мейн, с использованием ультрафильтрационных мембран и специально разработанной методикой эксплуатации. В исследовании авторов отмечалось, что ультрафильтрация является альтернативой обычным процессам обработки природных вод, таким как озонирование, коагуляция, флокуляция, хлорирование и т.д. .

В исследовании А. Андрианова, А. Первова теоретически обоснован и разработан процесс очистки природных вод методом ультрафильтрации. Предложена методика определения параметров эксплуатации систем ультрафильтрации. Разработана экспериментальная экспресс-методика, позволяющая в течение короткого времени определить оптимальные режимы (частота и продолжительность промывки) и дать прогноз работы ультрафильтрационной установки очистки воды. Предложенные рекомендации легли в основу разработки систем ультрафильтрации, используемых НИИ ВОДГЕО для обезжелезивания подземных вод, очистки поверхностных вод и улучшения качества водопроводной воды на объектах водоснабжения .

Использование мембран в мембранном биореакторе позволяет задерживать практически всю биомассу, в связи с этим происходит накопление видов бактерий с большим периодом генерации, способных деструктировать устойчивые загрязнители.

В процессе эксплуатации в порах мембраны откладываются соли, а на поверхности образуются биообрастания, препятствующие фильтрованию воды. Регенерацию можно осуществлять дозированием химических реагентов, растворяющих отложения, в биореактор или же извлечением мембранных модулей с последующим погружением в емкости, наполненные регенерационными растворами. Снятие с поверхности мембран накапливающихся загрязнений может осуществляться крупнопузырчатой аэрацией мембранного модуля.

Следует отметить, что мембранная фильтрация не может обеспечить удаления молекул, меньших по размеру, чем размер пор в мембране, а уменьшение размера пор неизбежно ведет к возрастанию трансмембранного давления и, как следствие, к увеличению энергозатрат на эксплуатацию мембранных установок.

Совмещение мембранной фильтрации и адсорбции на порошкообразном активном угле является дальнейшим развитием мембранной и биосорбционных технологий очистки воды и способно обеспечить удаление большего количества загрязняющих веществ из природных вод. Биосорбционную технологию на ПАУ при этом возможно реализовать с использованием ультрафильтрационных и микрофильтрационных мембранных элементов, характеризующихся невысоким трансмембранным давлением.

В литературе неоднократно отмечались преимущества и перспективность комбинированных методов очистки для кондиционирования природных вод и проводились исследования на водах таких водоисточников, как р. Москва и р. Дон . Согласно эффективность очистки воды р. Москва в биосорбционном мембранном реакторе по мутности составляет 99-100 %, цветности - 50-60 %, перманганатной окисляемости - 30-35 %, нефтепродуктам - 95-98 %.

Однако необходимо отметить, что недостаточная теоретическая изученность ряда вопросов и отсутствие надежных инженерных решений в отечественной практике вызывает необходимость проведения специальных экспериментальных исследований с различными типами сорбентов и мембран.

Приведенные данные позволяют сделать следующие выводы, что наличие в природных водах трудноокисляемых соединений, а также образование в процессе водоочистки хлорорганических соединений ограничивает возможность применения традиционных технологий кондиционирования природных вод, поэтому для удаления из природных вод биогенных элементов и специфических органических загрязнений наиболее перспективной технологией является биосорбционный метод, с последующим мембранным разделением.

Библиографическая ссылка

Федотов Р.В., Щукин С.А., Степаносьянц А.О., Чепкасова Н.И. СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ОЧИСТКИ ПРИРОДНЫХ ВОД ОТ АНТРОПОГЕННЫХ ЗАГРЯЗНЕНИЙ // Современные наукоемкие технологии. – 2016. – № 9-3. – С. 452-456;
URL: http://top-technologies.ru/ru/article/view?id=36249 (дата обращения: 18.10.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Описание:

Систем подготовки питательной воды паровых котлов среднего и высокого давления («крышных котельных» и мини-ТЭЦ) для теплоснабжения зданий или городских жилых комплексов (ЦТП) (в комбинации разработанных систем нанофильтрации с системами обратного осмоса).

Современным зданиям – современные технологии водоснабжения!

Разработка новых технологий и аппаратов на основе метода нанофильтрации для систем водо- и теплоснабжения городских зданий

А. Г. Первов , проф., д-р техн. наук, кафедра водоснабжения МГСУ

А. П. Андрианов , канд. техн. наук, кафедра водоснабжения МГСУ

Д. В. Спицов

В. В. Кондратьев , инженер, кафедра водоснабжения МГСУ

Современные темпы развития строительных технологий не всегда идут в ногу с развитием технологий водоподготовки, используемых для санитарно-технического оснащения современных зданий. Применение явно устаревших технологий часто создает помехи строительству. Например, необходимость создания станций доочистки воды в зданиях заставляет решать вопросы размещения, монтажа и эксплуатации (сервисного обслуживания). Поэтому от выбранной технологии зависят не только качество воды, но и габариты сооружений, затраты на монтаж и эксплуатацию, учитывающие объемы сточных вод и воды на собственные нужды.

Традиционные технологии, использующие напорные фильтры с загрузками из песка, угля и ионообменных смол достаточно «громоздки», требуют затрат при их эксплуатации (замене загрузок или их регенерации), образуют стоки при их промывке и регенерации.

Совершенствование систем нанофильтрации позволяет создать оборудование с минимальными весом и габаритами, простотой монтажа и «наращивания» мощности, минимальными затратами на обслуживание, отсутствием реагентов и расходных материалов.

Современная экологическая ситуация способствует более широкому использованию мембранных систем. Это объясняется в первую очередь ужесточающимися требованиями к качеству питьевой воды - содержанием хлорорганических соединений, болезнетворных бактерий, фторидов, нитратов, ионов стронция и т. д. Современные мембраны демонстрируют бесспорную эффективность и универсальность в очистке воды от различных видов загрязнений. Второй главной чертой современных мембранных технологий является их «экологическая» чистота - отсутствие потребляемых реагентов и, соответственно, опасных для окружающей среды сбросов и осадков, создающих проблему их утилизации. Введение платы за пользование водопроводной водой и за сбросы в канализацию заставляет использовать водоочистные системы, потребляющие минимальное количество воды и не имеющие сбросов. Современные разработки систем водоподготовки с применением мембранных технологий позволяют снабжать инженерные системы качественной водой, тем самым обеспечив надежность и качество их работы.

Мембранные процессы ультрафильтрации и нанофильтрации давно привлекают внимание специалистов по водоснабжению благодаря своей «универсальности» - возможности одновременного удаления ряда загрязнений различной природы: биологических (бактерий и вирусов), органических (гуминовых кислот и др.), коллоидных, взвешенных, а также растворимых в ионном виде. Различия в мембранных процессах состоят в уровне очистки воды (проскоку в очищенную воду тех или иных загрязнений), зависящем от размера пор мембран.

Технология нанофильтрации известна достаточно давно и уже начинает применяться в питьевом водоснабжении благодаря эффективному снижению содержания органических соединений (цветности, летучих хлорорганических соединений) и железа, а также жесткости .

Метод нанофильтрации уже широко применяется для очистки поверхностных и подземных вод, в том числе и на крупных городских сооружениях (например, на станциях в Париже - 10000 м 3 /ч и Нидерландах - 6000 м 3 /ч).

Однако до сих пор метод нанофильтрации рассматривается как разновидность метода обратного осмоса со всеми его недостатками: необходимостью тщательной предочистки для предотвращения образования отложений карбоната кальция и осадков органических и коллоидных веществ; высокими эксплуатационными расходами, связанными с дозированием реагентов предочистки, использованием моющих растворов и высокой стоимостью замены мембранных модулей; традиционными мембранными модулями типа «рулон», не отличающимися высокой надежностью. Высокие расходы реагентов и другие эксплуатационные затраты заставляют специалистов пока скептически относиться к использованию нанофильтрации для подготовки воды высокого качества на крупных водоочистных станциях несмотря на бесспорную эффективность в сравнении с «классическими» коагуляционными и окислительно-сорбционными технологиями.

В настоящее время широкие масштабы промышленного внедрения имеет метод ультрафильтрации, который применяется в основном на очистных сооружениях городских водопроводов: с декабря 2006 года - в Москве на Юго-Западной станции (а также на водоочистных станциях Парижа, Лондона, Амстердама, Сингапура, в ряде городов США, Канады).

Однако применение ультрафильтрационных мембран (с размером пор 0,01-0,1 мкм) имеет весьма ограниченную область применения (снижение коллоидных частиц и бактерий) и не универсально при очистке вод различного состава. Поэтому в схемах очистки воды ультрафильтрация используется в сочетании с другими технологиями (коагуляционной и окислительно-сорбционной). Главными достоинствами ультрафильтрации является очень высокая удельная производительность (более 100 л/м 2 ч по сравнению с 35-40 л/м 2 ч у нанофильтрации) и возможность проведения промывки мембран обратным током для удаления с мембран загрязнений.

Разработка новой технологии очистки воды с применением нанофильтрации

Таким образом, целью работы стало изучение возможности преодоления основных недостатков метода нанофильтрации и создание технологии, сочетающей эффективность нанофильтрации и простоту ультрафильтрации.

Предпосылки для создания такой технологии созрели уже давно . Известны способы очистки поверхностных вод с помощью нанофильтрации крупных европейских фирм Norit (Нидерланды) и PCI (Великобритания), использующие специальные трубчатые конструкции, позволяющие снизить осадкообразование и проводить гидравлические промывки со сбросом давления для «срыва» загрязнений с поверхности мембран . Однако аппараты трубчатых конструкций имеют очень малую удельную поверхность мембран и существенно увеличивают объемы установок и их энергопотребление, что в конечном счете выражается в высоких значениях удельных капитальных и эксплуатационных затрат.

Современные мембранные аппараты рулонной конструкции обладают большим преимуществом перед аппаратами с мембранами трубчатой формы в виде полого волокна, используемых в современных ультрафильтрационных установках - это плотность «упаковки мембран» или высокая удельная поверхность мембран на единицу объема аппарата. При одинаковых размерах «стандартных» мембранных модулей (диаметр 200 мм, длина 1000 мм) суммарная поверхность мембран в ультрафильтрационном модуле составляет 18-20 м 2 , а в нанофильтрационном 35-40 м 2 . Более того, стоимость производства рулонного модуля с плоскими мембранами значительно (на 50-60 %) дешевле, чем половолоконного. Поэтому основным направлением работы стало усовершенствование рулонной конструкции с целью повышения надежности работы и «устойчивости» к загрязнениям. Несовершенство конструкции рулонного элемента связано с наличием в нем сетки-сепаратора (рис. 1), являющейся «ловушкой» для загрязнений. Поэтому создание аппаратов с «открытым» каналом без мешающей сетки позволяет избежать накопления загрязнений во время работы и обеспечить возможность проведения гидравлических промывок со сбросом давления . Подбор оптимальных по своим свойствам нанофильтрационных мембран и разработка технологии производства мембранных модулей различных типоразмеров позволили создать безреагентные технологии для ряда случаев очистки воды. Отсутствие реагентов в схеме обеспечивается, с одной стороны, высокой эффективностью мембран в отношении задержания растворенных примесей, с другой - постоянным отводом загрязнений с поверхности мембран благодаря автоматизированным гидравлическим промывкам и поддержанием фильтрующей поверхности мембран «в чистоте».

Благодаря разработанным конструкциям аппаратов и автоматизированным промывкам созданы технологии, позволяющие очищать воду с высоким содержанием взвешенных веществ, железа, жесткости, цветности. В зависимости от состава очищаемой воды (главным образом содержания органических веществ различной природы) выбирается марка мембран с наиболее подходящими селективными свойствами. Для очистки поверхностных и подземных вод были опробованы различные типы мембран, но наибольшую эффективность продемонстрировали новые разработки мембран из ацетата целлюлозы со специальными стабилизирующими добавками. Из-за гидрофильной поверхности мембраны чрезвычайно эффективно задерживают ионы железа, растворенные органические вещества. Кроме того, благодаря поверхностным свойствам ряд коллоидных и органических соединений хуже осаждается на ацетатных мембранах, чем на композитных. Описанные выше положения были доказаны путем всесторонних исследований, описанных в прилагаемых публикациях. Аналогов разработанным аппаратам и мембранам пока нет как у отечественных, так и у зарубежных фирм. Технология получения мембран и производства рулонных элементов с «открытым» каналом также представляет ноу-хау и подробно не раскрывается. Попытки усовершенствовать каналы рулонных элементов проводились рядом авторов давно, однако результаты не были доведены до широкого промышленного внедрения вследствие сложности технологии. В настоящей работе используется технология изготовления, ранее изложенная и запатентованная, но благодаря совместным действиям авторов усовершенствованная и находящаяся в стадии патентования.

Разработанные нанофильтрационные аппараты оказываются конкурентоспособными по стоимости, производительности и режиму промывки с ультрафильтрационными аппаратами, будучи гораздо эффективнее по частным свойствам. На рис. 2 показаны зависимости производительности аппаратов «стандартного» размера от времени при очистке поверхностной воды из реки.

Вследствие потери производительности при образовании на мембранах осадков и необратимого забивания пор взвешенными частицами средняя производительность ультрафильтрационных мембран оказывается на 40-50 % меньше «паспортного», отличаясь на 30-40 % от производительности аппарата с нанофильтрационными мембранами.

Технология доочистки воды из водопровода в городских зданиях

Вода в централизованных водопроводах часто содержит взвешенные коллоидные вещества (например, гидроокись железа), а также бактерии вследствие вторичного загрязнения воды в водоводах. В ряде случаев наблюдается повышенное содержание хлор-органических веществ (во время паводков). Традиционно для удаления взвешенных веществ используются механические напорные фильтры, а для снижения содержания органических веществ и запахов - фильтры с сорбционной загрузкой.

Главными недостатками такого подхода являются: использование достаточно громоздких фильтров (обычно импортных из стеклопластика диметром 0,75-1,2 м и высотой более 2 м); трудности при монтаже фильтров в существующих помещениях; сложности обслуживания и замены загрузок; достаточно быстрое истощение сорбционной емкости угля и необходимость его замены.

В последнее время вместо механических фильтров используются установки ультрафильтрации, позволяющие обеспечить более глубокое удаление из воды коллоидов железа, бактерий и вирусов. Кроме того, мембранные установки компактны, имеют значительно меньший вес и объем по сравнению с механическими фильтрами, что особенно важно при их использовании и размещении в городских зданиях. Однако использование сорбционных фильтров в городских зданиях требует, вследствие ограниченной сорбционной емкости загрузок, достаточно высоких затрат на сервисное обслуживание таких установок.

Применение нанофильтрационных установок позволяет решить проблему удаления органических загрязнений из водопроводной воды без применения сорбционных фильтров и при минимальных эксплуатационных затратах.

Расчеты и исследования показывают, что удаление методом нанофильтрации большинства (свыше 90 %) органических загрязнений позволяет продлить ресурс сорбционных фильтров в 10-20 раз или соответственно уменьшить их объем, ограничившись использованием картриджных фильтров только на случай присутствия в воде запахов в период паводков или аварийных ситуаций на водоисточнике. Кроме того, нанофильтрационные мембраны частично убирают из воды жесткость и щелочность, делая воду пригодной для использования в системах теплоснабжения и горячего водоснабжения, избавляя заказчика от необходимости использования умягчителей и дополнительных расходных материалов (таблетированной соли).

Современные заказчики на городских объектах часто сами формируют дополнительные требования к качеству воды, значительно более жесткие, чем требования существующих международных стандартов ВОЗ и СанПиН, что вызвано наличием в зданиях «особых» потребителей - поликлиник, медицинских оздоровительных центров, предприятий общепита и др.

Так, например, при проектировании систем СТОЗ небоскреба «Федерация» проектировщики «столкнулись» с требованиями по содержанию железа -0,05 мг/л, ГСС (галогенсодержащих соединений) -10 мкг/л (против нормативов ВОЗ: 0,3 мг/л и 200 мкг/л соответственно). Похожие требования оказались решающими при выборе систем нанофильтрации для водоснабжения зданий Центральной тыловой таможни и поликлиники ФСБв Москве в 2002 году (рис. 3, 4).

В настоящей работе проведены исследования по сравнению эффективности снижения в водопроводной воде окисляемости и содержания растворенных органических веществ с использованием систем ультрафильтрации с сорбционной доочисткой и систем нанофильтрации. Качество очищенной воды оценивалось по показателям окисляемости .

Качество воды обобщенно оценивается по характеру кривых светопоглощения, где молекулярному весу и природе органических веществ соответствуют определенные длины волны.

На рис. 5 показаны кривые светопоглощения водопроводной воды, пропущенной через нанофильтрационные мембраны 4 и фильтр с загрузкой из угля 2 и 3. Применение нанофильтрационных мембран 4 позволяет получить воду с низкими показателями окисляемости. При дополнительном использовании сорбционных фильтров после нанофильтрации только для удаления запаха ресурс их увеличивается во много раз. Результаты ресурсных испытаний сорбционного фильтра (определение его сорбционной способности) показаны на рис. 6.

Экономический эффект от применения технологии нанофильтрации определяется сокращением затрат на обслуживание установок доочистки.

Технология очистки воды для целей теплоснабжения и вентиляции

Современное состояние городского строительства требует решения проблем снабжения зданий не только качественной питьевой водой, удовлетворяющей требованиям СанПиН, но в ряде случаев водой для специальных технологических нужд:

подпитка контуров теплосети и отопления;

подпитка контуров оросителей и испарителей систем кондиционирования воздуха;

Подпитка паровых котлов «крышных котельных» для систем теплоснабжения.

В зависимости от требований к качеству подготовленной воды в системах нанофильтрации используются различные типы мембран с различными показателями селективности (солезадерживающей способностью). При использовании мембранных установок для нужд подпитки теплосети и горячего водоснабжения, карбонатный индекс KI очищенной воды должен удовлетворять следующим условиям:

КI=[Са +2 ]· ≤ 2-5,

где , значения концентраций кальция и щелочности, выраженные в мг-экв/л.

Для обеспечения таких требований идеально подходят нанофильтрационные мембраны в сочетании с разработанными мембранными элементами с «открытым каналом», исключающим образование застойных зон в аппаратах и образование в них осадка карбоната кальция, резко снижающего время работы аппарата .

При необходимости получения питательной воды для паровых котлов и контуров систем кондиционирования воздуха требуется вода со значениями жесткости на уровне 0,01-0,02 мг-экв/л. Традиционно для получения глубоко умягченной воды используются двухступенчатые системы Na-катионирования или (в настоящее время) вместо I ступени Na-катионирования - установки обратного осмоса . И в том, и в другом случае схемы глубокого умягчения требуют высоких эксплуатационных затрат (на таблетированную соль, ингибитор, моющие растворы, частое сервисное обслуживание) и решения проблем утилизации регенерационных растворов. При использовании представленных в работе разработок созданы схемы двухступенчатого умягчения (с использованием на I ступени мембранных нанофильтрационных аппаратов) и аппаратов обратного осмоса на II ступени (рис. 7).

Такие схемы позволяют избежать применения реагентов при их эксплуатации и обеспечить длительный (свыше 2500 часов) период безостановочной работы. В ряде случаев целесообразно использовать специально разработанные патроны с порошкообразным ингибитором для повышения надежности систем обратного осмоса.

Для определения эксплуатационных характеристик мембранных схем с использованием аппаратов обратного осмоса и нанофильтрации (определение типов моющих растворов, времени непрерывной работы и др.) разработана специальная компьютерная программа.

Пример сравнения эксплуатационных затрат различных схем глубокого умягчения показан на рис. 8.

Благодаря использованию новых типов мембран и мембранных аппаратов время работы максимально увеличено, что ведет к снижению затрат по обслуживанию установки (рис. 9).

Общий вид двухступенчатых мембранных систем показан на рис. 10.

Описанные технологии применяются при разработке:

Систем очистки воды для централизованного водоснабжения: станции очистки поверхностной воды и станции очистки подземной воды производительностью до 10000 м 3 /ч; системы полностью безреагентные;

Систем очистки воды для микрорайонов и комплексов промышленных и торговых зданий;

Систем улучшения качества водопроводной воды для отдельных жилых и офисных зданий;

Систем подготовки воды подпитки теплосетей и бойлеров жилых и промышленных зданий;

Систем улучшения качества питательной воды из технических водопроводов городских предприятий;

Систем подготовки питательной воды паровых котлов среднего и высокого давления («крышных котельных» и мини-ТЭЦ) для теплоснабжения зданий или городских жилых комплексов (ЦТП) (в комбинации разработанных систем нанофильтрации с системами обратного осмоса). Разработанные технологии позволяют решать поставленные проблемы с применением компактного, легко монтируемого оборудования с простым «наращиванием» мощности, обеспечивающего автоматизированный круглосуточный режим работы, не нуждающегося в реагентах и расходных материалах и требующих сервисных мероприятий не чаще чем через 6 месяцев непрерывной работы.

Для водоснабжения крупного (жилого или гостиничного здания) система водоподготовки может состоять из четырех мембранных блоков общей производительностью 50 м 3 /ч. Габариты каждого блока (производительностью 12 м 3 /ч) составляют 1,5 м (глубина) х 1,5 м (высота) х 0,5 м (ширина). Общие габариты станции производительностью 50 м 3 /ч составляют (ШхДхВ) 3,5х1 ,5х1,5 м. В комплект поставки каждого блока входят: повысительный насос, мембранные аппараты, картриджи доочистки с углем. Эксплуатация системы состоит в проведении профилактических промывок (1 -2 раза в год) и замене угольных картриджей (1 раз в год). Срок службы мембран составляет 5 лет. Компоновка одного блока показана на рис. 11, общий вид одного блока производительностью 12 м 3 /ч показан на рис. 12.

Литература

  1. Первов А. Г. Андрианов А. П. Современные мембранные системы нанофильтрации для подготовки питьевой воды высокого качества // Сантехника. 2007. № 2.
  2. Futselaar M. et all. Direct capillary nanofiltration for surface water. // Desalination. V. 157(2003), p. 135-136.
  3. Futselaar H., Schonewille H., MeerW. Direct capillary nanofiltration for surface water. (Presented at the European Conference on Desalination and the Environment: Fresh Water for All, Malta, 4-8 May 2003. EDS, IDA) // Desalination. 2003. Vol.157, p. 135-136.
  4. Bruggen B., Hawrijk I., Cornelissen E., Vandecasteele С Direct nanofiltration of surface water using capillary membranes: comparison with flat sheet membranes. // Separation and Purification Technology. 2003.
  5. Bonn_ P.A.C., Hiemstra P., Hoek J.P., Hofman J.A.M.H. Is direct nanofiltration with air flush an alternative for household water production for Amsterdam? // Desalination. 2002. V. 152, p. 263-269.
  6. Web-сайт Trisep http://www.trisep.com.
  7. Web-сайт PIC Membranes http://www.pcimem.com.
  8. Pervov Alexei G., Melnikov Andrey G. The determination of the required foulant removal degree in RO feed pretreatment. // IDA world conference on Desalination and Water reuse August 25-29, 1991, Washington. Pretreatment and fouling.
  9. Pervov A.G. A simplified RO process design based on understanding of fouling mechanisms.// Desalination 1999, Vol. 126.
  10. Riddle Richard A. Open channel ultrafiltration for reverse osmosispretreatment. // IDA world conference on Desalination and Water reuse August 25-29, 1991, Washington. Pretreatment and fouling.
  11. Первов А.Г. Мембранный рулонный элемент. Патент №2108142, выд. 10.04.1998.
  12. Irvine Ed, Welch David, Smith Alan, Rachwal Tony. Nanofiltration for colour removal - 8 years operational experience in Scotland. // Proc. Of the Conf. on Membranes in Drinking and Industrial Water Production. Paris, France, 3-6 October 2000. V 1, p. 247-255.
  13. Pervov A.G. Scale formation prognosis and cleaning procedure schedules in reverse osmosis operation. // Desalination 1991, Vol. 83.
  14. Hilal Nidal, Al-Khatib Laila, Atkin Brian P., Kochkodan Victor, Potapchenko Nelya. Photochemical modification of membrane surfaces for (bio)fouling reduction: a nano-scale study using AFM // Desalination 2003, Vol. 156, p. 65-72.
  15. Hilal Nidal, Mohammad A. Wahab, Atkina Brian, Darwish Naif A.Using atomic force microscopy towards improvement in nanofiltration membranes properties for desalination pre-treatment: A review // Desalination 2003, Vol. 157, p. 137-144.
  16. Первов А. Г., Мотовилова Н. Б., Андрианов А. П., Ефремов Р. В. Разработка систем очистки цветных вод северных районов на основе технологий нанофильтрации и ультрафильтрации // Очистка и кондиционирование природных вод: Сб. науч. трудов. Вып. 5. М., 2004.
  17. Первов А. Г., Андрианов А. П., Спицов Д. В., Козлова Ю. В. Выбор оптимальной схемы доочистки водопроводной воды в городских зданиях с использованием мембранных установок // Сборник докладов седьмого международного конгресса «Вода: экология и технология». Том 1.
  18. Первов А. Г., Бондаренко В. И., Жабин Г. Г. Применение комбинированных систем обратного осмоса и ионного обмена для подготовки питательной воды паровых котлов // Энергосбережение и водоподготовка. 2004. № 5.

В условиях современного большого города, с загрязненным воздухом и достаточно плохой экологией, каждый человек стремится сохранить здоровье. Вода – основной продукт для каждого из нас. В последнее время все больше людей задумываются о том, какую воду они употребляют. В связи с этим жесткость и очистка воды не пустые термины, а важные параметры. Сегодня специалисты успешно применяют технологии водоподготовки и водоочистки, что способствует получению гораздо более чистой, пригодной для употребления воды. Профессионалы уделяют внимание и смягчению воды, проводя ряд мероприятий, улучшающих ее свойства.

Что предусматривают технологии водоподготовки

Давайте разберем более детально, что же такое технологии водоподготовки. Это прежде всего очистка воды от планктона. Данный микроорганизм, обитающий в реках, наиболее интенсивно начал развиваться после того, как появились крупные водохранилища. Отметим, что, когда планктон развивается в большом количестве, вода начинает неприятно пахнуть, меняться в цвете и приобретать характерный привкус.

Сегодня множество компаний в сфере промышленности выливает в реки свои неочищенные сточные воды с огромным содержанием органических загрязнений и химических примесей. Из этих открытых водоемов впоследствии и добывают питьевую воду. Как результат – большая часть из них, главным образом тех, что располагаются на территории мегаполисов или рядом с ними, очень загрязнена. В воде присутствуют фенолы, хлорорганические пестициды, аммонийный и нитритный азот, нефтепродукты и иные вредные вещества. Безусловно, вода из таких источников без предварительной подготовки к употреблению непригодна.

Не следует забывать о новых технологиях производства, разных ЧС и авариях. Все эти факторы также способны ухудшить состояние воды в источниках и негативно сказаться на ее качестве. Благодаря современным методам исследований ученым удалось найти в воде и нефтепродукты, и амины, и фенолы, и марганец.

Технологии водоподготовки, если речь идет о городе, – это в том числе возведение станций водоочистки. Благодаря прохождению через несколько этапов очищения вода становится более пригодной для питья. Но тем не менее даже с применением водоочистительных сооружений она освобождается от вредных примесей не до конца, а потому в наши дома поступает еще довольно загрязненной.

Сегодня существуют различные технологии водоподготовки и очистки питьевой и сточной воды. В рамках данных мероприятий применяют механическую очистку от разных примесей, используя установленные фильтры, удаляют остатки хлора и хлорсодержащие элементы, очищают воду от большого количества минеральных солей, содержащихся в ней, а также смягчают, устраняют соли и железо.

Основные технологии водоподготовки и водоочистки

Технология 1. Осветление

Осветлением называют стадию очистки воды, на которой устраняют ее мутность, снижая количество механических примесей природных и сточных вод. Уровень мутности воды, в особенности поверхностных источников в период паводков, иногда доходит до 2000–2500 мг/л, в то время как норма для воды, пригодной для питья и использования в хозяйстве, составляет не более 1500 мг/л.

Воду осветляют, осаждая взвешенные вещества при помощи специальных осветлителей, отстойников и фильтров, которые являются наиболее известными сооружениями водоочистки. Одним из самых известных, широко используемых на практике методов является коагулирование, то есть понижение количества тонкодисперсных примесей в воде. В рамках данной технологии водоподготовки используют коагулянты – комплексы для осаждения и фильтрования взвешенных веществ. Далее осветленная жидкость поступает в резервуары чистой воды.

Технология 2. Обесцвечивание

Коагулирование, использование разных окислителей (к примеру, хлора вместе с его производными, озона, марганца) и сорбентов (активного угля, искусственных смол) позволяет обесцвечивать воду, то есть устранять или обесцвечивать в ней окрашенные коллоиды или полностью растворенные вещества.

Благодаря этой технологии водоподготовки загрязненность воды можно существенно снизить, устранив большинство бактерий. При этом даже после удаления одних вредных веществ в воде часто остаются и другие, к примеру бациллы туберкулеза, брюшного тифа, дизентерии, вибрион холеры, вирусы энцефалита и полиомиелита, вызывающие инфекционные заболевания. Чтобы окончательно их уничтожать, воду, используемую для бытовых и хозяйственных нужд, следует обязательно обеззараживать.

Коагуляция, отстаивание и фильтрация имеют свои минусы. Данные технологии водоподготовки обладают недостаточно эффективностью и дорого стоят, а потому необходимо применение иных методов очистки и повышения качества воды.

Технология 3. Обессоливание

При данной технологии водоподготовки из воды удаляют все анионы и катионы, влияющие на содержание солей в целом и уровень ее электропроводности. При обессоливании применяют обратный осмос, ионный обмен и электродеионизацию. В зависимости от того, какой уровень содержания солей и какие требования существуют к обессоленной воде, выбирают подходящий способ.

Технология 4. Обеззараживание

Конечная стадия очистки воды – дезинфекция, или обеззараживание. Основная задача этой технологии водоподготовки – подавить жизнедеятельность вредных бактерий, находящихся в воде. Чтобы полностью очистить воду от микробов, фильтрацию и отстаивание не используют. Чтобы обеззаразить, ее хлорируют, а также применяют иные технологии водоподготовки, о которых мы расскажем далее.

Сегодня специалисты используют множество способов обеззараживания воды. Технологии водоподготовки можно разделить на пять основных групп. Первый метод – термический. Второй – сорбция на активном угле. Третий – химический, при котором используют сильные окислители. Четвертый – олигодинамия, при котором ионы воздействуют на благородные металлы. Пятый – физический. В рамках этой технологии водоподготовки используются радиоактивное излучение, ультрафиолетовые лучи и ультразвук.

Как правило, при обеззараживании воды применяют химические методы с использованием озона, хлора, диоксида хлора, марганцовокислого калия, пероксида водорода, гипохлорита натрия и кальция как окислителей. Что касается определенного окислителя, в данном случае чаще всего применяют хлор, гипохлорид натрия, хлорную известь. Способ дезинфекции выбирают исходя из расхода и качества очищаемой воды, эффективности ее начальной очистки, условий транспортировки и хранения реагентов, возможности автоматизировать процессы и механизировать сложные работы.

Специалисты дезинфицируют воду, предварительно обработанную, прошедшую коагулирование, осветленную и обесцвеченную в слое взвешенного осадка или отстоянную, отфильтрованную, поскольку фильтр не содержит частиц, на или внутри которых могут располагаться адсорбированные микробы, не подвергнутые обеззараживанию.

Технология 5. Обеззараживание с применением сильных окислителей

В данный момент в сфере ЖКХ обычно хлорируют воду с целью ее очистить и продезинфицировать. При употреблении воды из-под крана следует помнить о содержании в ней хлорорганических соединений, уровень которых после обеззараживания с использованием хлора составляет до 300 мкг/л. При этом начальный порог загрязненности не влияет на данный показатель, поскольку именно хлорирование вызывает образование этих 300 микроэлементов. Употреблять воду с такими показателями крайне нежелательно. Хлор, соединяясь с органическими веществами, образует тригалометаны – производные метана, имеющие выраженный канцерогенный эффект, в результате воздействия которого появляются раковые клетки.

Когда хлорированная вода кипятится, в ней образуется сильнейшее ядовитое вещество под названием диоксин. Снизить уровень тригаломенатов в воде можно, уменьшив объем хлора, используемый при обеззараживании, и заменив его на другие вещества для дезинфекции. В ряде случаев, чтобы удалить органические соединения, образующиеся при обеззараживании, пользуются гранулированным активированным углем. Безусловно, не следует забывать о полном и регулярном контроле над показателями качества питьевой воды.

Если же природные воды очень мутные и имеют высокую цветность, нередко прибегают к предварительному хлорированию. Но, как было сказано ранее, у данной технологии водоподготовки нет достаточной эффективности, а также она очень вредна для нашего здоровья.

К минусам хлорирования как к технологии водоподготовки, таким образом, относят малую эффективность плюс огромный ущерб для организма. Когда образуется канцероген тригалометан, появляются раковые клетки. Что касается образования диоксина, данный элемент, как было отмечено выше, является сильнейшим ядом.

Без использования хлора дезинфекция воды с экономической точки зрения является нецелесообразной. Различные альтернативные технологии водоподготовки (к примеру, дезинфекция, при которой используют УФ-излучение) стоят довольно дорого. Оптимальным вариантом на сегодняшний день можно считать обеззараживание воды с использованием озона.

Технология 6. Озонирование

Дезинфекция с применением озона кажется более безопасной, нежели хлорирование. Но и у этой технологии водоподготовки есть свои минусы. Озон не обладает повышенной стойкостью и склонен к быстрому разрушению, а потому оказывает бактерицидное влияние на протяжении очень малого времени. При этом воде требуется миновать водопроводную систему, перед тем как поступить в наши дома. Здесь появляются трудности, так как все мы представляем примерную степень изношенности водопроводов.

Еще один нюанс этой технологии водоподготовки – вступление озона в реакцию с множеством веществ, среди которых, к примеру, фенол. Элементы, образующиеся при их взаимодействии, еще более токсичны. Дезинфекция воды с использованием озона – опасное мероприятие, если вода содержит хотя мы мизерный процент ионов брома (его сложно выявить даже в лаборатории). Когда выполняется озонирование, появляются ядовитые соединения брома – бромиды, представляющие для человека опасность даже в микродозах.

Озонирование при этом – оптимальный вариант для дезинфекции большого объема воды, предполагающих тщательную дезинфекцию. Но не стоит забывать, что озон, как и вещества, появляющиеся при его реакциях с хлорорганикой, является ядовитым элементом. В связи с этим большая концентрация хлорорганики на этапе очистки воды может представлять большой вред и опасность для здоровья.

Итак, к минусам обеззараживания с использованием озона можно отнести еще большую токсичность при взаимодействии с фенолом, что даже опаснее хлорирования, а также короткое бактерицидное действие.

Технология 7. Обеззараживание с применением бактерицидных лучей

Чтобы дезинфицировать подземные воды, нередко используют бактерицидные лучи. Применять их можно только в случае коли-индекса исходного состояния воды не выше 1000 ед/л, содержания железа до 0,3 мг/л, мутности – до 2 мг/л. Если сравнивать с дезинфекцией хлором, бактерицидное воздействие на воду оптимально. Во вкусе воды и ее химических свойствах при использовании этой технологии водоподготовки не происходит никаких изменений. Лучи проникают в воду практически мгновенно, а после их воздействия она становится пригодной к употреблению. При помощи данного метода происходит уничтожение не только вегетативных, но и спорообразующих бактерий. Кроме того, использовать установки для дезинфекции воды таким способом гораздо удобнее, чем при хлорировании.

В случае с неочищенными, мутными, цветными или водами, в которых повышен уровень содержания железа, коэффициент поглощения оказывается таким сильным, что использование бактерицидных лучей становится неоправданным с экономической точки зрения и недостаточно надежным с санитарной. В связи с этим бактерицидный метод лучше использовать для дезинфекции уже очищенной воды или чтобы обеззараживать подземные воды, которым не требуется очистка, но необходимо обеззараживание для профилактики.

К минусам дезинфекции с использованием бактерицидных лучей можно отнести экономическую неоправданность и ненадежность этой технологии водоподготовки с точки зрения санитарии.

Технология 8. Обезжелезивание

Основные источники соединения железа в природной воде – процессы выветривания, эрозия почв и растворение горных пород. Что касается питьевой воды, в ней железо может присутствовать из-за коррозии труб водопровода, а также потому, что муниципальные станции очистки применяли железосодержащие коагулянты для осветления воды.

Существует современное направление в нехимических методах очистки подземных вод. Это биологический метод. В основу такой технологии водоподготовки положено использование микроорганизмов, чаще всего железобактерий, переводящих Fe 2 + (закисное железо) в Fe 3 + (ржавчину). Данные элементы для здоровья человека не являются опасными, но продукты их жизнедеятельности обладают достаточно высокой токсичностью.

Основа современных биотехнологий – применение свойств каталитической пленки, которая образуется на загрузке из песка и гравия или ином похожем материале с мелкими порами, а также способность железобактерий обеспечивать протекание сложных химических реакций без энергетических затрат и реагентов. Данные процессы естественны, а в их основу положены биологические природные закономерности. Железобактерии активно и в большом количестве развиваются и в воде, содержание железа в которой от 10 до 30 мг/л, но практика показывает, что жить они могут и при меньшей концентрации (в 100 раз). Единственным условием здесь является поддержка достаточно низкого уровня кислотности среды и одновременного доступа кислорода из воздуха, хотя бы в небольшом объеме.

Завершающий этап применения данной технологии водоподготовки – сорбционная очистка. Ее применяют, чтобы задержать продукты жизнедеятельности бактерий и провести окончательную дезинфекцию воды с использованием бактерицидных лучей.

Данный метод имеет достаточно преимуществ, важное из которых, к примеру, экологичность. У него есть все шансы для дальнейшего развития. Однако у этой технологии водоподготовки есть и минус – процесс отнимает много времени. Это значит, что для того, чтобы обеспечить большие производственные объемы, емкостные сооружения должны быть крупногабаритными.

Технология 9. Д егазация

На коррозионную агрессивность воды влияют определенные физико-химические факторы. В частности, вода становится агрессивной, если в ней есть растворенные газы. Что касается наиболее распространенных и коррозионно-агрессивных элементов, здесь можно отметить углекислый газ и кислород. Не секрет, что, если в воде содержится свободный диоксид углерода, кислородная коррозия металла становится интенсивнее в три раза. В связи с этим технологии водоподготовки всегда подразумевают устранение растворенных газов из воды.

Существуют главные способы удаления растворенных газов. В их рамках применяют физическую десорбцию, а также пользуются химическими методами их связывания, чтобы удалить остатки газа. Для применения таких технологий водоподготовки, как правило, необходимы высокие энергетические затраты, большие производственные площади, расход реагентов. Помимо этого, все это может вызывать вторичное микробиологическое загрязнение воды.

Все вышеперечисленные обстоятельства поспособствовали возникновению принципиально новой технологии водоподготовки. Это мембранная дегазация, или дегазификация. Применяя данный метод, специалисты, используя особую пористую мембрану, в которую могут проникать газы, но не способна проникать вода, удаляют растворенные в воде газы.

Основа действия мембранной дегазации – применение специальных мембран большой площади (обычно созданных на основе полого волокна), размещенных в напорных корпусах. Процессы газообмена происходят в их микропорах. Мембранная технология водоподготовки дает возможность применять более компактные установки, а риски того, что вода вновь подвергнется биологическому и механическому загрязнению, сводятся к минимуму.

Благодаря мембранным дегазаторам (или МД) возможно удаление из воды растворенных газов без ее диспергирования. Сам процесс осуществляется в воде, затем в мембране, далее – в газовом потоке. Несмотря на наличие ультрапористой мембраны в МД, принцип действия мембранного дегазатора отличается от мембран иного типа (обратноосмотического, ультрафильтрационного). В пространстве мембран дегазатора поток жидкости через мембранные поры не идет. Мембрана – это инертная газонепроницаемая стенка, служащая разделителем для жидкой и газообразной фаз.

Мнение эксперта

Особенности применения технологии озонирования подземных вод

В.В. Дзюбо ,

Л.И. Алферова ,

старший научный сотрудник кафедры «Водоснабжение и водоотведение» ФГБОУ ВПО «Томский государственный архитектурно-строительный университет»

На то, насколько эффективным будет озонирование как технология водоподготовки и очистки подземных вод, влияют не только параметры синтеза озона: затраты электрической энергии, цена и т. д. Важно и то, насколько эффективно происходит перемешивание и растворение озона в воде, подвергающейся обработке. Не следует забывать и о качественном составе.

Для лучшего растворения озона больше подходит холодная вода, а распадается вещество быстрее, когда температура водной среды растет. Когда давление насыщения увеличивается, озон также растворяется лучше. Все это нужно учитывать. К примеру, озон до 10 раз быстрее растворяется в определенной температурной среде, нежели кислород.

В России и за рубежом неоднократно проводились исследования, связанные с озонированием воды. Результаты исследований данной технологии водоподготовки показали, что на уровень насыщения воды озоном (максимально возможную концентрацию) влияют следующие факторы:

  • соотношение объема подаваемой смеси озона и воздуха (м 3) и количества обрабатываемой воды Qw (м 3) - (Qoz / Qw);
  • концентрация озона в смеси озона и воздуха, которая подается в воду;
  • объем воды, подвергающейся обработке;
  • температура воды, подвергающейся обработке;
  • давление насыщения;
  • продолжительность насыщения.

Если источником водоснабжения являются подземные воды, следует помнить, что в зависимости от сезона они могут меняться, в частности их качество становится иным. Это необходимо учитывать, обосновывая технологии водоподготовки для организации коммунального водоснабжения, особенно если в нем применяется озонирование.

Если в технологиях водообработки подземных вод используется озон, не стоит забывать о существенных различиях в их качестве в разных регионах России. Кроме того, качество подземных вод отличается и от состава исследуемой ранее чистой воды. В связи с этим применение какой-нибудь известной технологии водоподготовки или технологических параметров обработки воды будет некорректным, поскольку всегда следует учитывать качественный состав и специфику воды, подлежащей планируемой обработке. К примеру, между реальной или фактически достигаемой концентрацией озона в природных подземных водах, подлежащих обработке, и теоретически возможных или достигаемых при применении чистой воды показателях всегда будут отличия. Обосновывая те или иные технологии водоподготовки, требуется прежде всего детальное изучение качественного состава источника воды.

  • Очистка и обеззараживание сточных вод: современная проблематика

Современные технологии водоподготовки и инновационные методы

Внедряя новые методы и технологии водоподготовки, можно решать определенные задачи, достижение которых обеспечивает:

  • выпуск питьевой воды по ГОСТу и действующим стандартам, удовлетворяющим требования покупателей;
  • надежную очистку и обеззараживание воды;
  • бесперебойность и надежность работы сооружений водоочистки;
  • понижение себестоимости подготовки воды и процессов ее очистки;
  • экономию реагентов, электрической энергии и воды на личные нужды;
  • высокое качество производства воды.

Следует затронуть и новейшие технологии водоподготовки, которые используют, чтобы улучшить воду.

1. Мембранные методы

Основу мембранных методов составляют современные технологии водоподготовки, в которые входят макро- и микро-, ультра- и нанофильтрация, а также обратный осмос. Мембранная технология водоподготовки используется, чтобы опреснять сточные воды и решать задачи, связанные с водоочисткой. При этом очищенную воду еще нельзя назвать полезной и безопасной для организма. Отметим, что мембранные методы дорогостоящие и энергоемкие, а их применение связано с постоянными затратами на обслуживание.

2. Безреагентные методы

Здесь следует прежде всего выделить структурирование, или активацию, жидкости как самый часто применяемый метод. Сегодня существуют различные способы активации воды (к примеру, использование магнитных и электромагнитных волн, кавитации, волн УЗ-частот, воздействие с применением различных минералов, резонансные способы). При помощи структурирования можно решать ряд задач по подготовке воды (обесцвечивать, смягчать, дезинфицировать, дегазировать, обезжелезивать воду и проводить ряд других манипуляций). Химические технологии водоподготовки при этом не используются.

Активированная вода и жидкость, к которой были применены традиционные технологии водоподготовки, отличаются друг от друга. О недостатках традиционных способов уже было сказано ранее. Структура активированной воды схожа со структурой воды из родника, «живой» водой. В ней есть множество целебных свойств и огромная польза для организма человека.

Чтобы удалять из жидкости муть (трудно осаждаемые тонкие взвеси), применяют иной метод активированной воды – ее способность к ускорению коагуляции (слипанию и осаждению) частиц и последующему образованию крупных хлопьев. Химические процессы и кристаллизация растворенных веществ происходят гораздо быстрее, абсорбция становится более интенсивной, наблюдается улучшение коагуляции примесей и их выпадения в осадок. Кроме того, такими способами часто пользуются, чтобы предотвращать появление накипи в теплообменном оборудовании.

На качество воды прямо влияют используемые методы активации и технологии водоподготовки. В их числе:

  • устройства обработки воды магнитным методом;
  • электромагнитные способы;
  • кавитационные;
  • резонансное волновое структурирование жидкости (данная технология водоподготовки является бесконтактной, а ее основу составляют пьезокристаллы).

3. Гидромагнитные системы

Предназначение ГМС (гидромагнитных систем) – обработка потоков воды при помощи постоянного магнитного поля особой пространственной конфигурации. ГМС используют, чтобы нейтрализовать накипь в теплообменном оборудовании, а также чтобы осветлять воду (к примеру, после дезинфекции хлором). Работает данная система так: ионы металла, находящиеся в воде, взаимодействуют между собой на магнитном уровне. В это же время протекает химическая кристаллизация.

Обработка с использованием гидромагнитных систем не нуждается в химических реактивах, а потому данный метод очистки экологический чист. Но в ГМС присутствуют и минусы. В рамках этой технологии водоподготовки применяются постоянные мощные магниты, основу которых составляют редкоземельные элементы, сохраняющие свои параметры (силу магнитного поля) на протяжении длительного времени (десятилетий). Но в случае перегрева данных элементов выше отметки 110–120 о С возможно ослабевание магнитных свойств. В связи с этим монтаж гидромагнитных систем следует осуществлять в тех местах, где температура воды не превышает эти значения, т.е. до того, как ее нагревают (линия обратки).

Итак, к минусам ГМС относятся возможность использования при температуре не более 110–120 о С, недостаточная эффективность, необходимость использовать вместе с ней иные методы, что невыгодно с экономической точки зрения.

4. Кавитационный метод

При кавитации в воде образуются полости (каверны или кавитационные пузырьки), внутри которых находятся газ, пар или их смесь. При кавитации вода переходит в другую фазу, то есть превращается из жидкости в пар. Появляется кавитация тогда, когда понижается давление в воде. Изменение давления бывает вызвано увеличением ее скорости (при гидродинамической кавитации), прохождением акустической воды во время полупериода разрежения (при акустической кавитации).

Когда кавитационные пузырьки резко исчезают, возникают гидравлические удары. В результате этого создается волна сжатия и растяжения в воде с УЗ-частотой. Кавитационным методом пользуются, чтобы очистить воду от железа, жестких солей и других веществ, превышающих ПДК. При этом обеззараживание воды кавитацией не очень эффективно. К другим недостаткам использования метода относятся существенное потребление электроэнергии и дорогостоящее обслуживание с расходными фильтрующими элементами (ресурс от 500 до 6000 м 3 воды).

Технологии водоподготовки питьевой воды для ЖКХ по схеме

Схема 1. Аэрация-дегазация - фильтрование - обеззараживание

Данную технологию водоподготовки можно назвать наиболее простой с технологической точки зрения и конструктивной при реализации. Схема реализуется разными методами аэрации-дегазации – все зависит от того, какой качественный состав имеют подземные воды. Вот два ключевых способа применения этой технологии водоподготовки:

  • аэрация-дегазация жидкости в начальном состоянии в резервуаре; принудительная подача воздуха и последующая фильтрация на зернистых фильтрах и обеззараживание способом УФ-облучения не используются. При аэрации-дегазации производят разбрызгивание на жесткий контактный слой при помощи эжекторных насадок и вихревых сопл. В качестве резервуара начальной воды могут выступать контактный бассейн, водонапорная башня и т. д. Фильтры здесь – альбитофиры, горелые породы. Данную технологию обычно используют, чтобы очищать подземные воды, в которых присутствуют минеральные формы растворенных Fe 2 + и Mn 2 +, не имеющих в составе H 2 S, CH 4 и антропогенных загрязнений;
  • аэрация-дегазация, проводимая по аналогии с предыдущим способом, но при этом дополнительно используется принудительная подача воздуха. Такой метод применяют, если в составе подземных вод есть растворенные газы.

Очищенную воду могут подавать в специальные РЧВ (резервуары чистой воды) или башни, которые являются специальными накопительными емкостями, при условии, что они не еще были использованы как приемный резервуар. Далее воду транспортируют потребителям по разводящим сетям.

Схема 2. Аэрация-дегазация - фильтрование - озонирование - фильтрование на ГАУ - обеззараживание

Что касается данной технологии водоподготовки, ее использование целесообразно для комплексной очистки подземных вод, если присутствуют сильные загрязнения в большой концентрации: Fe, Mn, органика, аммиак. В ходе данного способа проводят разовое или двойное озонирование:

  • если в воде есть растворенные газы CH 4 , CO 2 , H 2 S, органика и антропогенные загрязнения, озонирование производят после аэрации-дегазации с фильтрованием на инертных материалах;
  • если CH 4 нет, при (Fe 2 +/Mn 2 +) < 3: 1 озонирование нужно проводить на первом этапе аэрации-дегазации. Уровень доз озона в воде не должен быть выше 1,5 мг/л, чтобы не допустить окисления Mn 2 + до Mn 7 +.

Можно использовать те фильтрующие материалы, что указаны в схеме А. Если применяется сорбционная очистка, часто пользуются активированными углями и клиноптилолитом.

Схема 3. Аэрация-дегазация - фильтрование - глубокая аэрация в вихревых аэраторах с озонированием - фильтрование - обеззараживание

Данная технология развивает технологию очистки подземных вод по схеме В. Ее можно применять, чтобы очищать воды, в которых содержится повышенный уровень Fe (до 20 мг/л) и Mn (до 3 мг/л), нефтепродукты до 5 мг/л, фенолы до 3 мкг/л и органика до 5 мг/л с рН исходной воды, близкой к нейтральной.

В рамках этой технологии водоподготовки лучше всего использовать УФ-облучение, чтобы обеззараживать очищенную воду. Территориями для бактерицидных установок могут быть:

  • места, расположенные прямо перед подачей потребителям очищенных вод (если протяженность сетей небольшая);
  • прямо перед местами водоразбора.

С учетом того, каким качеством обладают подземные воды с санитарной точки зрения и каком состоянии находится система водоснабжения (сети, сооружения на них, РЧВ и т. д.), оснащение станций или оборудование водоподготовки в целях дезинфекции воды перед ее поставкой потребителям могут подразумевать наличие любого приемлемого для условий той или иной территории оборудования.

Схема 4. Интенсивная дегазация-аэрация - фильтрование (АБ; ГП) - обеззараживание (УФО)

В данной технологии водоподготовки есть этапы интенсивной дегазации-аэрации и фильтрования (иногда двухступенчатого). Применение этого способа целесообразно при необходимости отдувки растворенных CH 4 , H 2 S и СО 2 , присутствующих в повышенных концентрациях при достаточно небольшом содержании растворенных форм Fe, Mn - до 5 и 0,3 мг/л соответственно.

В рамках применения технологии водоподготовки производятся усиленная аэрация и фильтрование в 1–2 ступени.

Чтобы выполнять аэрацию, пользуются вихревыми форсунками (применительно к индивидуальным системам), вихревыми дегазаторами – аэраторами, комбинированными дегазационно-аэрационными узлами (колоннами) с одновременной отдувкой газов.

Что касается фильтрующих материалов, они аналогичны указанным в схеме А. При содержании фенолов и нефтепродуктов в подземных водах фильтрацию проводят, используя сорбенты – активированные угли.

В соответствии с этой схемой выполняют фильтрацию воды на двухступенчатых фильтрах:

  • 1-я ступень – чтобы очистить воду от соединений Fe и Mn;
  • 2-я ступень - чтобы провести сорбционную очистку воды, которая уже очищена, от нефтепродуктов и фенолов.

Если это возможно, выполняют только первую стадию фильтрации, за счет чего схема становится гибче. При этом реализация такой технологии водоподготовки требует больше затрат.

Если мы рассматриваем малые и средние населенные пункты, применение данной технологии водоподготовки предпочтительнее в напорном варианте.

В рамках применения технологии водоподготовки можно пользоваться любым способом дезинфекции воды, уже прошедшей очистку. Здесь все зависит от того, насколько производительной является система водоснабжения и каковы условия территории, где используется технология водоподготовки.

Схема 5. Озонирование - фильтрование - фильтрование - обеззараживание (NaClO)

Если нужно удалить антропогенные и природные загрязнения, прибегают к озонированию с дальнейшей фильтрацией через зернистую нагрузку и адсорбцией на ГАУ и обеззараживанием гипохлоритом натрия при содержании в воде общего железа до 12 мг/л, перманганата калия до 1,4 мг/л и окисляемости до 14 мг О 2 /л.

Схема 6. Аэрация-дегазация - коагулирование - фильтрование - озонирование - фильтрование - обеззараживание (NaClO)

Этот вариант схож с предыдущей схемой, но здесь используется аэрация-дегазация и введен коагулянт перед фильтрами обезжелезивания и деманганации. Благодаря технологии водоподготовки возможна очистка от загрязнений антропогенного характера в более сложной ситуации, когда уровень содержания железа достигает до 20 мг/л, марганец до 4 мг/л и присутствует высокая перманганатная окисляемость - 21 мг О 2 /л.

Схема 7. Аэрация-дегазация - фильтрование - фильтрование - ионный обмен - обеззараживание (NaClO)

Данная схема рекомендована районам Западной Сибири, где есть значительные месторождения нефти и газа. В рамках технологии водоподготовки воду освобождают от железа, проводятся собрция на ГАУ, ионный обмен на клиноптилолите в Na-форме с дальнейшим обеззараживанием и гипохлоритом натрия. Отметим, что на территории Западной Сибири уже успешно пользуются схемой. Благодаря такой технологии водоподготовки вода соответствует всем нормам СанПиН 2.1.4.1074–01.

У технологии водоподготовки есть и минусы: периодически ионообменные фильтры необходимо регенерировать, используя раствор поваренной соли. Соответственно, здесь остро встает вопрос уничтожения или вторичного применения раствора для регенерации.

Схема 8. Аэрация-дегазация - фильтрование (Ц + КМnО 4) - озонирование - отстаивание - адсорбция (Ц) - фильтрование (Ц + КМnО 4) (деманганация) - адсорбция (Ц) - обеззараживание (Cl)

Благодаря технологии водоподготовки по данной схеме из воды удаются тяжелые металлы, аммоний, радионуклиды, антропогенные органические загрязнения и иное, а также марганец и железо в два этапа – с применением коагуляции и фильтрации через загрузку из природного цеолита (клиноптилолита), озонирования и сорбции на цеолите. Регенерируют загрузку, применяя реагентный метод.

Схема 9. Аэрация-дегазация - озонирование - фильтрование (осветление, обезжелезивание, деманганация) - адсорбция на ГАУ - обеззараживание (УФО)

В рамках данной технологии водоподготовки проводятся следующие мероприятия:

  • полностью удаляются метан с попутным повышением рН в результате частичной отдувки диоксида углерода, сероводорода, а также летучие хлорорганические соединения (ЛХОС), выполняются преозонирование, окисление преозонирования и гидролиз железа (стадия глубокой аэрации-дегазации);
  • удаляются 2–3-валентное железо и железофосфатные комплексы, частично марганец и тяжелые металлы (стадия фильтрации технологии водоподготовки);
  • разрушают остаточные стойкие комплексы железа, перманганата калия, сероводорода, антропогенные и природные органические вещества, сорбции продуктов озонирования, нитрифицируют аммонийный азот (стадия озонирования и сорбции).

Очищенная вода должна подвергаться дезинфекции. Для этого выполняют УФ-облучение, вводят малую дозу хлора, и только потом подают жидкость в водораспределительные сети.

Мнение эксперта

Как выбрать подходящую технологию водоподготовки

В.В. Дзюбо ,

д-р техн. наук, профессор кафедры «Водоснабжение и водоотведение» ФГБОУ ВПО «Томский государственный архитектурно-строительный университет»

С инженерной точки зрения проектировать технологии водоподготовки и составлять технологические схемы, по которым нужно приводить воду к питьевым стандартам, достаточно трудно. На определение метода обработки подземных вод как отдельного этапа при составлении общей технологии водоподготовки влияют качественный состав природных вод и требуемая глубина очистки.

Подземные воды в российских регионах различны. Именно от их состава зависят технологии водоподготовки и достижения соответствия воды питьевым нормам СанПиН 2.1.4.1074–01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Санитарно-эпидемиологические правила и нормативы». От исходного качества и содержания питьевой воды также зависят используемые технологии водоподготовки, их сложность и, конечно, затраты на оборудование для очистки.

Как уже было отмечено, состав у вод различен. На его формирование влияют географические, климатические, геологические условия местности. К примеру, результаты природных исследований состава вод на разных территориях Сибири свидетельствуют о том, что они в разные сезоны обладают разными характеристиками, поскольку их питание в зависимости от времени года меняется.

Когда нарушаются условия отбора подземных вод из водоносных горизонтов, происходит переток вод из соседствующих горизонтов, что также воздействует на изменение характеристик, качественный состав жидкостей.

Поскольку от характеристик вод зависит выбор той или иной технологии водоподготовки, необходимо детально и полно анализировать их состав, чтобы выбирать менее затратный и наиболее эффективный вариант.

Loading...Loading...